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Christoph Böhringer a,b, Andreas

Lschel a, and Thomas F. Rutherford c,∗

a Centre for European Economic Research (ZEW), Mannheim

b Department of Economics, University of Heidelberg

c Ann Arbor, MI

Abstract

We present a decomposition approach for integrated assessment modeling of climate policy

based on a linear approximation of the climate system. In our formulation the economic and

natural science components are processed independently on different time scales. Turnpike

properties of the Ramsey growth model can be exploited to provide a precise representation

of post-terminal emissions and to reduce the economic horizon required to accurately ap-

proximate transition paths. Germaine to the economic assessment of climate policies, our

decomposition accommodates formulation of the economic model in a complementarity for-

mat and thereby provides a means of incorporating second-best effects that are not easily

represented in an optimization model.
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1 Introduction

Integrated assessment modeling emerged in the mid-eighties as a new paradigm for interfac-

ing science and policy concerning complex environmental issues. An integrated assessment

model combines complementary knowledge from various disciplines in order to derive insights

into questions of policy design. Integrated assessment models (IAMs) link mathematical

representations of the natural system and the socio-economic system to capture cause-effect

chains including feedback. An early example of integrated assessment is the RAINS model

of acidification in Europe [Alcamo et al. 1985]. Over the past years, a variety of models have

been developed for the integrated assessment of climate change – for surveys see Weyant et

al. [1996], Parson and Fisher-Vanden [1997], or Kelly and Kolstad [1999].

Figure 1 illustrates the basic structure of IAMs employed for climate policy analysis.

These models aim to represent the causal chain through which (i) economic activities trigger

anthropogenic greenhouse gas emissions, (ii) emissions of greenhouse gases translate into

atmospheric concentration, temperature shift, and climate change, and (iii) climate change

feeds back via the ecosystem to the economy.

Economic Model 

GHG-Emissions 

Impacts

Ecosystem Model 

Concentration

Temperature 

Climate Model 

Figure 1: Schematic Structure of Integrated Assessment Models for Climate Change

Weyant et al. [1996] distinguish two broad classes of IAMs of climate change: policy
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simulation models which assess specific policy measures and policy optimization models which

seek optimal policies. Policy simulation models typically are used to evaluate the impact of

a specific exogenous policy. Avoiding optimization, these models are descriptive and can

contain much greater modeling detail on bio-/geophysical, economic or social aspects (see

e.g. the Integrated Model to Assess the Greenhouse Effect – IMAGE – by Rotmans [1990]).

As a downside, the impacts investigated in detailed simulation models may be more difficult

to interpret [Kelly and Kolstad 1999].

Policy optimization models are normative in the sense that they seek to derive an “ideal”

best-response policy, usually defined from an economic efficiency viewpoint. Assuming ratio-

nal behavior of economic agents, policy instruments such as emission control rates or emission

taxes are derived given explicit objectives, e.g., maximizing social welfare or minimizing the

social costs of meeting exogenous environmental targets. Two prominent examples of op-

timizing IAMs cast as nonlinear programs are the Dynamic Integrated Climate Economy

(DICE) model by Nordhaus [1994] and A Model for Evaluating Regional and Global Effects

of GHG reduction policies (MERGE) by Manne and Richels [1992], both of which incorporate

stylized representations of the global economy and the global carbon cycle.

From our point of view there are two key difficulties with policy optimization IAMs in the

literature. First, integrated assessment models must be solved over very long time horizons in

order to provide a consistent accounting of both the costs and benefits of climate policy. The

overall model horizon is dictated by the climate component which is typically run over two

to three hundred years. When climate and economic equilibria are solved as a simultaneous

system, the need to run over a very long horizon demands a sparse level of modeling detail

in order to keep the optimization algorithm tractable. For this reason, optimizing IAMs are

based on compact representations of both the socioeconomic and natural science systems. A

second disadvantage of optimizing IAMs is due to their traditional formulation as nonlinear

programs which do not readily admit second-best effects such as preexisting tax distortions.
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Thus, “optimal” policies emerging from IAMs formulated as nonlinear programs are only

optimal in a perfect, undistorted economy.

We present a new approach for IAMs of climate change which overcomes these two central

shortcomings. A decomposition of the economic and climate components allows us to run

these sub-models on different time scales. We solve the climate model over a long time

horizon in order to produce a precise approximation of climate dynamics and future climate

state, and we solve the economic model, formulated either as a nonlinear program or as a

mixed complementarity problem (MCP – see Rutherford [1995]), over a shorter time horizon,

consistent with the decades in which policy design is relevant. A shorter horizon in the

economic model expands the scope for policy-relevant details on other model dimensions

such as regional or sectoral disaggregation.1 Furthermore, our procedure is readily applied

to economic models posed as complementarity problems, hence providing the opportunity to

incorporate second-best effects. Policy-relevant complexities such as distortionary taxes and

market failures (e.g. knowledge spillovers) can then be accounted for in the policy design

process.

A third important benefit of our decomposition – independent of the IAM’s representa-

tion as an optimization problem or a mixed complementarity problem – is the separation of

components from different disciplines through a consistent interface as the object of inter-

disciplinary collaboration.

The remainder of this paper is as follows. In section 2, we lay out the generic decom-

position approach and explain how this accomodates a complementarity formulation of the

1Chang [1997] uses Benders decomposition approach to the solution of the MERGE integrated assessment

model [Manne et al. 1995]. MERGE is thereby decomposed into early and late periods and these two sub-models

are solved iteratively to produce intertemporal optimality. Unlike our approach, however, Chang’s representation

of the MERGE model retains both economic and climate components in an integrated optimization problem

whereas our formulation explicitly separates the economic and climate science components which may then operate

on different time scales.
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economic model. In section 3, we demonstrate the advantages of the decomposition for ap-

proximating the infinite horizon of the DICE model, a prototype optimizing IAM in the field

of climate change policy analysis. We then extend the basic DICE setting with public goods

funded through distortionary taxation in order to illustrate the importance of a second-best

setting for the design of climate policies. In section 4, we conclude. An algebraic summary

of the alternative DICE formulations is provided in Appendix A. Programming codes for the

numerical models are listed in Appendix B which can be downloaded from www.mpsge.org.

2 Decomposition

Policy optimization models of climate change typically adopt a cost-benefit perspective in

which the marginal costs of controlling greenhouse gas emissions are balanced against the

marginal damages induced by those emissions. Climate change impacts are portrayed by

a “damage function” which features parametric relationships between economic losses and

changes of the climate state. The damage function can be based on explicit models describing

climate change impacts in natural vegetation, agricultural yields, water availability, etc. In

compact IAMs such as DICE, climate change damages are often related in reduced form to the

global mean temperature. Damages may affect either or both consumption and production

activities.

In stylized terms we formulate the climate policy problem as a nonlinear optimization

problem (NLP) of a representative infinitely-lived agent:

max
∞∑
t=0

(
1

1 + ρ

)t
U(Ct, Dt) (1)
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s.t. Ct = F (Kt, Dt, Et)− It

Kt+1 = (1− δ)Kt + It

Dt = Dt(TEt )

TEt = H(St)

St+1 = G(St, Et)

K0 = K̄0, S0 = S̄0

where:

ρ is the discount rate,

U denotes instantaneous utility reflecting both final consumption and the disutility of cli-

mate damages,

Ct represents consumption in period t,

F characterizes aggregate production in period t as a function of capital, damages (with

potentially adverse effects on productivity), and emissions,

Dt denotes damages of climate change in period t,

TEt is the global mean temperature in period t,

Kt is the capital stock in period t (with K0 = K̄0 as the initial capital stock),

Et are emissions in period t,

It is investment in period t,

H describes the functional relationship between the climate state and temperature,

St is a vector of the climate state (with S0 = S̄0 as the initial climate state), and

G characterizes the motion of the climate state as a function of the previous climate state

and current anthropogenic emissions.

We merge the relationships TEt = H(St) and St+1 = G(St, Et) into a single equivalent

equation

TEt = Γt(S0, E0, E1, ..., Et−1), (2)
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where Γt relates temperature in period t as a function of the initial climate state and emissions

in previous periods.

Our decomposition is based on a linear approximation of the climate response to anthro-

pogenic activities, i.e. emissions, of the economic system:

TEt ≈ T̄Et +
t∑

τ=0

γtτ (Eτ − Ēτ ) (3)

where

T̄Et is the reference value of temperature in period t,

Ēτ is the reference emissions in period τ , and

γtτ denotes the gradient of climate response (temperature) in period t to anthropogenic

emissions in period τ < t.

Within the economic model the values of γtτ are treated as constants. The climate model

is nonlinear, so iterative refinement of the Jacobian is required. They are updated in each

outer iteration of the decomposition algorithm as:2

γtτ =
∂Γt(S0, ~E)

∂Eτ

∣∣∣∣∣
~E=Ē

(4)

In our implementation of DICE, the Jacobian for the climate sub-model is approximated

with numerical differencing:

γtτ ≈ T̄Et − Γt(S0, E0, ..., Ēτ + ε, ..., Ēt−1)
ε

. (5)

This procedure quickly converges for our illustrative application.

Figure 2 summarizes the basic decomposition approach for our simplified climate policy

problem. We start from a reference emission trajectory Ē which is provided by the economic

model to the climate model. The climate model calculates the associated point impacts and

emissions sensitivities (i.e., T̄ t, the temperature trajectory, and γtτ , impacts on temperature

2Likewise, the reference values for temperature, T̄Et , and emissions, Ēτ are updated.
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in period t of emissions in period τ). These information are returned to the economic model

for a subsequent optimization based on a linear approximation of the climate impact. The

decomposition process is iterated to convergence. Were there multiple emission sources or

greenhouse gases g emitted over time periods t, we would compute one numerical difference

for each gas/time period, rendering a total of |g| × |t| simulations.
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Figure 2: Basic Decomposition Approach

Numerical differencing is only computationally tractable for small-scale climate models

with solution times measured in seconds. However, our decomposition approach can still

be applied to moderate-scale climate models with tolerable solution time (say hours) by

using existing techniques for finding the Jacobian of climate variables.3 Furthermore, for

many policy applications and thought experiments, the use of highly simplified reduced-
3Sensitivity analyses of climate models is commonly employed to obtain an optimal fit between model results

and observations. In order to avoid a computationally expensive approximation of the Jacobian by finite differ-
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form climate models seems appropriate. For example, large-scale coupled general circulation

models (GCMs) which are the most reliable instruments currently available for the estimation

of anthropogenic climate change can be replaced by very compact reduced-form models with

solution times in seconds provided they are properly calibrated to the underlying GCM (see

Hoos et al. [2001]).

An obvious benefit of our decomposition is that it permits the economic model and the

climate model (either in complex or reduced form) to be developed by separate teams with

experts from the respective disciplines. Likewise, the approach permits decomposition of

effects associated with the different model components – it becomes, for example, easy to

interchange the climate model as part of a sensitivity analysis of policy proposals.

A more subtle advantage of the decomposition relates to differences in the nature of time

scales for economic and climate models. Intertemporal optimization by economic agents

requires that the economic model be solved simultaneously over a time horizon sufficiently

long to trace the transition toward a new steady-state, [Lau et al. 2002]. Current investment

depends on future returns to capital, future emissions, future damages, etc. In contrast, the

climate model can be evaluated recursively given emission paths from the economic model.

Decomposition can therefore simplify the numerical calculation, as it is no longer required

to solve the climate model as a simultaneous system of equations.

A further advantage of the decomposition is realized when we formulate the underlying

economic model as a mixed complementarity problem (MCP). The MCP framework exploits

the complementarity features of economic equilibrium, thereby including the NLP represen-

tation of economic equilibrium as a special case (Mathiesen [1985], Rutherford [1995]). By

forming the Lagrangian and differentiating, a nonlinear program can be posed as a comple-

mentarity problem based on Karush-Kuhn-Tucker conditions. The MCP formulation relaxes

ences, climatologists are developing automated methods to calculate derivatives analytically based on source code

of the climate model (see Giering and Kaminski [1998]).
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the so-called “integrability constraints” imposed by the NLP framework; one can directly

address second-best settings that reflect initial inefficiencies.

Projecting Post-Terminal Emissions and Mitigation

The Ramsey model, which provides the basis for nearly all policy-oriented IAMs, is an

“exogenous growth model” (see Barro and Sala-I-Martin [1995], Chapter 2). Primary factor

supplies and the intertemporal discount rate are both model inputs, so the long-run growth

rate and interest rates are both known. A policy shock in the Ramsey model produces

changes in levels but not in growth rates. For this reason, we can estimate emissions paths

and damages in the post-terminal period provided that we have an accurate approximation

of prices and quantities through the transition period.

Shadow prices on climate impacts are Lagrange multipliers in the NLP and explicit vari-

ables in the MCP model. These values provide a means of balancing the near-term cost with

the long-term benefits offered through emissions abatement. An economic cost undertaken

in period t (the cost of which is reflected in the shadow price of emissions abatement in that

year) provides benefits for subsequent periods τ > t in the same way that capital formation

in year t leads to a stream of capital services in subsequent periods.

A linear approximation to the climate model describes the time profile of marginal ben-

efits associated with emission reductions. The first order condition for emissions in year

t compares the cost of abatement with the benefits of the reduction in emissions in later

periods of the economic model and in those periods which lie in the post-terminal period:

−pt ∂F
∂Et

=
∞∑
τ=t

∂Γτ
∂Et

pDτ =
T∑
τ=t

∂Γτ
∂Et

pDτ +
∞∑

τ=T+1

∂Γτ
∂Et

p̃Dτ (6)

where

pt is the price of the aggregate production good in period t,

pDτ is the price (cost) of damage in period τ , and
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p̃Dτ is the marginal cost of damage projected in a period τ > T , based on terminal damage

and the post-terminal interest rate (r̄):

p̃Dt = pDT

(
1

1 + r̄

)t−T
.

While there are similarities between economic and climate investments, there are sub-

stantial differences in the time frame over which these investments pay off, as is illustrated

in Figure 3. This figure considers the marginal contribution of benefits over future years of

two different types of “investment” in year 80 in the DICE model. The time path labeled

“climate” evaluates the discounted return to a marginal reduction in greenhouse gas emis-

sions in year 80 while the path labeled “capital” measures the stream of discounted returns

to an additional unit of physical capital formation in year 80. At the margin both types of

investment are just profitable, but the time frame over which the benefits accrue is much

longer in the case of climate capital than in the case of physical capital. This difference ex-

plains in large part why our decomposition procedure works so well. Climate effects operate

over a longer time scale than economic effects, and for this reason the climate model needs

to operate over a longer horizon than the economic model.

In contrast, conventional IAMs employ “transversality” weights in the objective function

which reflect post-terminal climate impacts. The specification of the values for these pa-

rameters remains ad-hoc [Nordhaus 1994] and can have substantial impact on results, as we

demonstrate below.

Integrability Constraints

First-order conditions of mathematical programs only correspond to equilibrium conditions

for the case of integrability that implies efficient allocation (see e.g. Takayma and Judge

[1971]).In practical terms, integrability refers to a situation where the shadow prices of

programming constraints coincide with market prices. Since many interesting economic

problems are associated with non-integrable second-best situations – e.g. due to ad-valorem
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Figure 3: Time Structure of Returns to Economic and Climate Investments

taxes, institutional price constraints, or spillover externalities – the classical optimization

approach to integrated assessment is relatively limited in the scope of policy applications.4

In contrary, the MCP formulation of economic problems permits the incorporation of “non-

integrabilities” to reflect inefficiencies of market allocation.

3 Illustration

We illustrate the advantages of our decomposition approach using the DICE model by Nord-

haus [1994]. This model was originally formulated as a nonlinear program in an integrated,

simultaneous system of equations. Because of its simplicity and relative transparency, DICE

and its multiregional extension, RICE [Nordhaus and Yang 1996], have been widely used for

the integrated assessment of climate change. DICE is based on Ramsey’s model of saving

4Integrability problems may be relaxed in the optimization context by adding terms to the objective and

solving a sequence of nonlinear programs to obtain a market equilibrium (see e.g. Manne and Rutherford [1994]).

However, sequential joint maximization with tax distortions is tedious and error-prone.
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and investment. A single world producer-consumer chooses between current consumption,

investment in productive capital, and costly measures to reduce current emissions and slow

climate change. Population growth and technological change (productivity growth) are both

exogenous. The representative consumer maximizes the discounted utility of consumption

over an infinite horizon subject to a Cobb-Douglas production function which includes dam-

ages from climate change as a quadratic function of changes in global mean temperature. In

the absence of abatement measures, anthropogenic emissions occur in direct proportion to

output. Emissions per unit output are assumed to decline exogenously at a fixed rate and can

be further reduced by costly emission-control measures. Within a simple reduced-form “two-

box” (ocean and atmosphere) climate sub-model based on Schneider and Thompson [1981],

emissions accumulate and increase the stock of greenhouse gases in the atmosphere. As this

stock grows, it increases the amount of solar radiation trapped by the earth’s atmosphere

which in turn triggers an increase in global mean temperature.

For our illustrative application of the decomposition approach, we distinguish two al-

ternative mathematical formulations of DICE: the familiar implementation as an integrated

model (int) and its representation as the combination of separate climate and economic

models (dec). The int implementation adopts the terminal constraints (“transversality”

adjustment terms) as suggested by Nordhaus, where as the dec implementation employs

cost-benefit calculus of climate impacts through the climate model.5

3.1 Horizon Sensitivity

In order to evaluate the sensitivity of the optimal policy with respect to the model horizon,

we run both models for horizons of 5, 10, 20, and 40 periods (with each period representing

5The algebra for both models is provided in Appendix A (provided in this paper) and GAMS code for these

models is provided in Appendix B (available from www.mpsge.org) . We provide coding of the decomposed

model in both NLP and MCP formats, and these formulations produce identical results.
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a 10-year time interval). The decomposed model uses an economic horizon of the specified

length but runs the climate model over a 600 year horizon. As is evident in Figure 4,

the decomposed model is virtually insensitive to the model horizon, whereas the integrated

model shows a drastic sensitivity, in particular for the first few decades. The key policy

instrument in the DICE model is the emissions control rate, i.e., the fraction of emissions

which are mitigated relative to the uncontrolled level. Differences in optimal emission control

rates between the two formulations differ substantially, particularly for short time horizons.

Precise terminal approximation in the decomposed model offers scope for improvements in

the range and details of policy analysis that can be covered, including regional, sectoral or

technological details.
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Figure 4: Sensitivity of Emission Control Rate

3.2 Revenue Replacement

A decomposed MCP formulation can incorporate second-best effects. We illustrate the im-

portance of market distortions by considering a simple extension of the DICE model in which
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a public good provided in each period is funded through a distortionary tax on capital earn-

ings. In the reference simulation, we hold the capital tax fixed at an exogenous rate and

compute the “optimal” abatement profile together with the resulting level of public goods

provision.6 In the counterfactual simulation we endogenize the capital tax rate through an

equal-yield constraint (keeping public good provision at the reference level) and evaluate

the marginal utility of deviations from the “optimal” abatement profile for each model pe-

riod. Carbon taxes then serve two roles in the model. They change relative prices to induce

conservation, and they raise public funds thereby providing an opportunity to decrease the

capital tax.

As has been well established in the economic literature, preexisting tax distortions af-

fect the economic cost of environmental policy instruments. When the government applies

emission restrictions, these raise revenue which may be used to reduce other taxes. In the

case where revenues from carbon permit sales are used to replace distortionary taxes, the

“optimal” abatement profile based on a first-best setting is too low. This occurs because the

marginal benefit calculus in the optimization framework is implicitly based on a marginal

cost of public funds equal to 1, whereas distortionary financing of public provision implies

that the marginal cost of public funds is greater than one. As illustrated in Figure 5, the

larger the baseline tax rate on capital in our example, the larger is the marginal benefit of

increasing stringency of environmental restrictions.

4 Conclusions

In this paper, we have presented a new approach to integrated assessment modeling of cli-

mate change. Our decomposition of IAMs is based on a linear approximation to the climate

model and permits the economic and natural science components to be processed indepen-

6“Optimal” – as suggested by the traditional optimization approach – implies that direct marginal abatement

cost are equated with the marginal benefits from avoided damages.
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dently on different time scales. An accurate cost-benefit calculus can be performed with the

climate submodel operating over a longer time horizon while the economic model focuses

on the policy-relevant near term policy options. From a computational point of view, the

reduction in model periods vis--vis integrated models permits more scope for policy-relevant

details. Furthermore, a decomposition approach based on a complementarity formulation of

the economic system provides a convenient means of incorporating second-best effects that

may substantially alter policy conclusions based on the assumptions of perfectly undistorted

economies.

Our decomposition allows the separation of components from different disciplines through

a consistent interface. The economic model generates emission paths, and the climate model

returns climate impacts and their partial derivatives with respect to emissions. Further-

more, the decomposition permits assessment of the relative importance of the various model

components. For example, it becomes possible to interchange the climate sub-model and

evaluate sensitivity of optimal abatement policies with respect to alternative formulations of
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natural science relationships. We leave such an investigation for future research.

Finally, it should be noted that our decomposition approach may be attractive for higher-

dimensional problems featuring sub-components operating on different time scales. For ex-

ample, the cost-benefit analysis of R&D expenditures can be based on a decomposed side

calculation running over a much longer time horizon than the core economic component.
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A Algebraic Model Formulations

We use the DICE model by Nordhaus [1994] – a standard Ramsey model of savings and

investment that combines stylized representations of the global economy and the climate –

in order to illustrate the advantages of the decomposed mixed complementarity framework

for integrated assessment.

In section A.1, we start with the original implementation of DICE as a nonlinear program

(NLP). In section A.2, we proceed with the decomposition of the integrated economy-climate

model while maintaining the NLP formulation of the economic sub-model. In section A.3, we

re-cast the NLP formulation of the economic sub-model as a mixed complementarity problem

(MCP) thereby making use of state-variable targeting for the economic sub-model and cost-

benefit calculus through the climate sub-model to better approximate the infinite horizon. In

section A.4, we lay out a simple public finance extension to account for pre-existing market

distortions within the MCP framework.

A.1 Integrated NLP Formulation

The standard assumptions for the Ramsey model imply that the optimal allocation of re-

sources by a central planner who maximizes the utility of the representative agent is identical

to the optimal allocation of resources in an undistorted decentralized economy. The first-

order conditions of the associated NLP formulation can thus be interpreted as the outcome

of idealized competitive markets.

In the NLP setting, the representative agent explicitly maximizes the discounted value

of “utility” from consumption subject to a number of economic and geophysical constraints.
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Objective function

The economic objective function in DICE is defined as:

T∑
t=1

ρtLt log[C(t)/L(t)] (A-1)

where:

Ct is consumption in period t,

Lt is the exogenous labor supply in perid t (population growth), and

ρt denotes the discount factor.

Economic constraints

The economic model consists of equations describing technology, abatement options, output

markets, emissions, and capital accumlation. Gross economic output is given by a standard

Cobb-Douglas function:

Qt = atL
1−γ
t Kγ

t (A-2)

where:

Qt denotes gross economic output,

at represents the level of total factor productivity,

Kt is the capital stock in period t (with K0 = K̄0 exogenously specified), and

γ is the capital value share (capital elasticity in output).

Abatement options are described by a geometric control cost function:

At = b1Υb2
t (A-3)

where:

At is the abatement level in period t,

Υt denotes the emission control rate in period t, and
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b1, b2 are the exogenous paramters of the abatement cost function.

Total emissions are directly linked to gross output. The emission control rate Υt describes

the endogenous relationship between emissions and gross output:

Υt = 1− Et
σtQt

(A-4)

where:

Et denotes the emissions in period t, and

σt is an exogenous efficiency improvement factor which scales down the emission intensity

of macro production over time.

Output net of abatement and damage costs (both of which measured as loss in output)

equals:

Yt = Qt −AtQt −DtYt (A-5)

where Yt represents net output in period t, and Dt denotes damages of climate change in

period t.

In each period, net economic output is divided between consumption and investment:

Qt = Ct + It (A-6)

The capital stock is determined by the balance between depreciation and capital invest-

ment:

Kt = (1− δ)Kt−1 + It (A-7)

where δ denotes the capital depreciation rate.

Geophysical constraints

The climate sub-model in DICE contains four stylized geophysical relationships that link

together the different forces affecting climate change: emission accumulation and trans-

portation (carbon cycle), radiative forcing, and temperature-climate relationships for the

atmosphere and lower oceans.
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Emission accumulation and transportation is defined as:

Mt = 590 + βEt + (1− δM )(Mt−1 − 590) (A-8)

where:

Mt denotes the atmospheric concentration of CO2 emission,

β is the marginal atmospheric retention rate, and

δM represents the carbon transfer rate to deep ocean.

Radiative forcing is a function of CO2 emission concentration and other non-CO2 green-

house gases:

Ft = 4.1
(

log(Mt/590)
log(2)

)
+Ot (A-9)

where Ft is radiative forcing (i.e. the increase of surface warming in watts per square meter),

and Ot represents other greenhouse gases (most notably CH4 and N2O) that are taken as

exogenous.

Radiative forcings warm the atmospheric layer, which in turn warms the upper ocean,

thereby gradually warming the deep oceans. Due to thermal inertia of different layers there

are time lags in climate change. The links between radiative forcing and temperature changes

in the atmosphere and the deeper oceans are given as:

TEt = TEt−1 + c1[Ft−1 − c2TEt−1 − c3(TEt−1 − TLt−1)] (A-10)

TLt = TLt−1 + c4(TEt−1 − TLt−1) (A-11)

where:

TEt is the temperature in the atmosphere,

TLt is the temperature in the lower oceans, and

c1, c2, c3, c4 are geophysical parameters of climate dynamics.

24



Economic-geophysical linkage constraint

The interface between the economic system sub-model and the climate system sub-model is

given by an assumed quadratic relationship between atmospheric temperature and climate

change damage:

Dt = υ(TEt )2 (A-12)

where υ denotes a damage coefficient which is calibrated based on the damage level assumed

to be associated with CO2 doubling.

Terminal constraints

Approximation of an infinite horizon economy within a finite horizon numerical model re-

quires “terminal constraints”. For example, in the steady state, gross investment is pro-

portional to the capital stock through the growth rate of the labor force and the capital

depreciation rate. A typical terminal constraint for investment might then require sufficient

investment to cover growth plus depreciation:

IT = (χ+ δM )KT (A-13)

where χ denotes the growth rate of the labor force.

DICE uses this (integrable) constraint on investment in the terminal period together

with an adjustment term in the utility function to account for the “consumption” value

of terminal capital stock. In addition, adjustment terms are incorporated to reflect post-

terminal damages from emission concentrations and temperature. The adjusted objective

function then reads as:

[
T∑
t=1

ρtLt log(C(t)/L(t))

]
+ ρt(φKKT + φMMT + φT

E

TET ) (A-1’)

where:

φK is the (positive) “transversality” coefficient for capital,

25



φM is the (negative) “transversality” coefficient for emission concentration, and

φT
E

is the (negative) “transversality” coefficient for temperature.

A.2 Decomposed NLP formulation

Our first extension of Nordhaus’ model involves decomposition of the integrated economy-

climate model based on a linear approximation of the climate model. The decomposition

replaces the climate equations in the economic model with a reduced-form linear approxi-

mation of climate impacts (temperature):

Tt = Γt ≈ T̄t +
t∑

τ=1

∂Γt
∂Eτ

(Eτ − Ēτ ) (A-14)

where:

T̄t is the reference level value of temperature (climate impact) in period t,

Γt renders the temperagture in period t as a function of the intial climate state and emissions

in previous periods

Ēτ is the reference level value for emissions in period τ , and

∂Γt
∂Eτ

denotes the gradient of temperature in period t to anthropogenic emissions in period

τ .

Local dependence of temperature (climate impacts) in period t on emissions in period τ

may be calculated through numerical differencing:

∂Γt
∂Eτ

=
T̄Et − Γt

ε
(A-15)

where ε is a sufficiently small emission interval for numerical differencing.

Linear approximation of the climate model requires that we account for the local depen-

dence of the transversality terms in the objective function on emissions, and we can calculate

the gradient of the transversality terms as:

∂ΩT
∂Eτ

=
(φMMT + φT

E

TET )− (φMM̄T + φT
E

T̄ET )
ε

(A-16)
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where ∂ΩT
∂Eτ

denotes the local dependence of the transversality terms in the terminal period

on emissions in period τ .

Thus, we obtain the adjusted objective function:

[
T∑
t=1

ρtLt log(C(t)/L(t))

]
+ ρt

[
φKKT +

T∑
t=1

∂ΩT
∂Et

(Et − Ēt)
]

(A-1”)

Altogether, the decomposed model consists of an economic sub-model comprising equa-

tions (A-1”), (A-2)-(A-7), (A-13), and (A-14), and the climate sub-model compromising

equations (A-8)-(A-12), (A-15), and (A-16). We solve the decomposed model iteratively, by

first solving the economic model and then using the resulting emissions profile to evaluate

the climate model and its derivatives. Successive solutions converge rapidly as the partial

derivatives of temperature with respect to emissions turn out to be very stable.

A.3 Decomposed MCP formulation

Next, we provide the algebraic formulation of the decomposed MCP approach to DICE.

Following Mathiesen [1985], the economic model can be characterized by two classes of equi-

librium conditions that reflect the first-order conditions of the NLP: (i) zero profit conditions

for constant returns activities, and (ii) market clearance conditions for goods and factors.

The decision variables are two vectors: (i) activity levels for constant returns production, and

(ii) prices for goods (services) and factors. In equilibrium, each of these variables is linked to

one inequality condition: (i) an activity level to a zero profit condition, and (ii) a price to a

market clearance condition.7 The primal constraints of the NLP economic model constitute

the market-clearance conditions for the MCP whereas the shadow prices (dual variables)

of these constraints coincide with market prices. Differentiation of the NLP Langragian

with respect to the primal variables (activity levels) renders the zero-profit conditions of the

7In a model with multiple agents, we must add an additional class of income balances that relate factor income

to expenditure of agents (with associated income variables).
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MCP for consumption, capital accumulation, investment, net output, gross output, abate-

ment, emissions, damage, and emission control. We indicate the associated complementary

variable to each equilibrium condition using the “perp” operator, “⊥”.

• consumption:

ρtLt/C(t) = pCt ⊥ Ct (A-17)

where pCt is the price of consumption in period t.

• capital accumulation:

pKt Kt = γpQt Qt + pKt+1(1− δ)Kt ⊥ Kt (A-18)

where pQt denotes the price of gross output in period t, and pKt is the price of capital

in period t.

• investment:

pCt = pKt+1 ⊥ It (A-19)

• net output:

pYt (1 +Dt) = pCt ⊥ Yt (A-20)

where pYt represents the price of net output in period t

• gross output:

pQt = pyt (1−At)− pEt σt(1−Υt) ⊥ Qt (A-21)

where pEt is the price of emissions.

• abatement:

pAt + pYt Qt = 0 ⊥ At (A-22)

where pAt denotes the price of abatement.

• damage:

pDt + pYt Yt = 0 ⊥ Dt (A-23)

where pDt is the price of damage in period t.
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• emissions:

−pEt =
T∑
τ=1

pDτ
∂Dt

∂TEt

∂Γt
∂Eτ

+ pDT χt ⊥ Et (A-24)

where χt is the (parameterized) post-terminal climate impact of emissions in period t

(see below (A-16’)).

• emission control:

−pEt σtQt = pAt b1b2Υt(b2 − 1) ⊥ Υt (A-25)

Terminal Constraints

In the complementarity formulation, the post-terminal capital stock enters as an endogenous

variable. Using state variable targeting for this variable, we can relate the growth of invest-

ment in the terminal period to the growth rate of capital or any other “stable” quantity

variable such as macroeconomic output in the model:

IT /IT−1 = YT /YT−1 ⊥ KT (A-26)

Furthermore, we need a constraint that defines the price of the post-terminal capital:

It +KT (1− δ) = KT ⊥ pKT (A-27)

where KT represents the post-terminal capital stock.

The complementarity model formulation has explicit price indices representing the cost of

abatement and the benefits offered through abatement. A linear approximation to the climate

model portrays the time profile of marginal benefits associated with emission reductions at

different points in time through the economic model. Thus, we can compare the benefits

associated with cutbacks in emissions in the later periods of the model with the benefits of

those cutbacks in periods which lie beyond the terminal period of the model.

Post-terminal damages are calculated on the basis of the climate model which is solved

for several decades beyond the terminal period of the economic model. Extrapolating present

value prices and quantities into the post-terminal period then permits us to relate marginal
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emission throughout the time horizon of the economic model to damages occurring after the

terminal period of the economic model. The valuation of post-terminal damages is based on

a geometric extrapolation of post-terminal prices, and post-terminal climate is calculated on

the basis of post-terminal emission paths which are extrapolated from the economic model:

χt =

(
TC∑

τ=T

∂Dt

∂TEt

∂Γt
∂Eτ

p̄Dτ

)
/p̄DT (A-16’)

where p̄Dτ is the reference price of damage in period τ , and TC denotes the extended time

horizon of the climate model beyond the terminal period T of the economic model.

The decomposed MCP formulation of DICE combines equations (A-2)-(A-7), (A-13),

(A-14), and (A-17)-(A-27) for the economic model and equations (A-8)-(A-12), (A-15), and

(A-16’) for the climate model.

A.4 Decomposed MCP formulation with Distortionary Public Fund-

ing

Our final model version extends the MCP formulation of DICE’s economic model with a

public sector which finances the provision of a public good model through distortionary

taxation of capital earnings. The extended MCP model cum decomposition can then be

used to illustrate the importance of initial market distortions for the formulation of climate

response policies.

The modifications and extensions involve:

• capital accumulation (zero-profit condition):

pKt Kt =
γpQt Qt
1 + tk

+ pKt+1(1− δ)Kt ⊥ Kt (A-18’)

where tk denotes the tax rate on capital earnings (as the equal-yield instrument).

• equal-yield constraint for public good provision:

G = Ḡ ⊥ tk (A-28)
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where G is the level of public good provision (likewise: government demand), and Ḡ

denotes a fixed target level (index) of public good provision.

• explicit definition of rents on emissions:

ζt = pEt Et − pYt AtQt ⊥ ζt (A-29)

where ζt denotes the rents on emissions in period t.

• government budget constraint:

G

T∑
t=0

pCt Lt
L0

= tk
γpQt Qt

(1 + tk) + ζ
⊥ G (A-30)

The decomposed MCP formulation with distortionary taxation combines equations (A-

2)-(A-7), (A-13), (A-14), (A-17), (A-18’), and (A-19)-(A-30) for the economic model and

equations (A-8)-(A-12), (A-15), and (A-16’) for the climate model.
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Appendix B: GAMS Code

B-1 dicedata.gms

$title DICE Data based on the revised version of the model as of August 1993

* Define default solvers here:

option nlp=conopt;
option mcp=path;

* http://www.econ.yale.edu/~nordhaus/homepage/dicemodels.htm

$if not set t $set t 40
$if not defined t SET t Time periods /1*%t%/
$if not defined tc ALIAS (t,tc);

SETS tfirst(t) First period,
tlast(t) Last period;

SCALARS
r Rate of social time preference per year /.03/,
gl0 Growth rate of population per decade /.223/,
dlab Decline rate of population growth per dec /.195/,
deltam Removal rate carbon per decade /.0833/,
ga0 Initial growth rate for technology per decade /.15/,
dela Decline rate of technology per decade /.11/,
sig0 CO2-equiv-GWP ratio /.519/,
gsigma Growth of sigma per decade /-.1168/,
dk Depreciation rate on capital per year /.10/,
gamma Capital elasticity in output /.25/,
m0 CO2-equiv concent. 1965 billion tons carbon /677/,
tl0 Lower stratum temperature (C) 1965 /.10/,
t0 Atmospheric temperature (C) 1965 /.2/,
atret Marginal atmospheric retention rate /.64/,
q0 1965 gross world output trillions 1989 US$ /8.519/,
L0 1965 world population millions /3369/,
k0 1965 value capital billions 1989 US dollars /16.03/,
c1 Coefficient for upper level /.226/,
lam Climate feedback factor /1.41/,
c3 Coefficient trans upper to lower stratum /.440/,
c4 Coeff of transfer for lower level /.02/,
a0 Initial level of total factor productivity /.00963/,
a1 Damage coeff for co2 doubling (fraction GWP) /.0133/,
b1 Intercept control cost function /.0686/,
b2 Exponent of control cost function /2.887/,
phik Transversality coef. capital /140 /,
phim Transversality coef. carbon ($ per ton) /-9/,
phite Transversality coef. temp. (B$ per degree C) /-7000 /;

PARAMETERS
L(tc) Level of population and labor,
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al(tc) Level of total factor productivity (TFP),
sigma(tc) Emissions-output ratio,
rr(tc) Discount factor,
ga(tc) Growth rate of TFP from 0 to T,
forcoth(tc) Exogenous forcings from other greenhouse gases,
gl(tc) Growth rate of labor 0 to T,
gsig(tc) Cumulative improvement of energy efficiency;

tfirst(t) = yes$(ord(t) eq 1);
tlast(t)= yes$(ord(t) eq card(t));
gl(tc) = (gl0/dlab)*(1-EXP(-dlab*(ORD(tc)-1)));
L(tc)=L0*EXP(gl(tc))*.9;
ga(tc)= (ga0/dela)*(1-EXP(-dela*(ORD(tc)-1)));
al(tc) =a0*EXP(ga(tc));
gsig(tc) = (gsigma/dela)*(1-EXP(-dela*(ORD(tc)-1)));
sigma(tc)=sig0*EXP(gsig(tc));
rr(tc) = (1+r)**(10*(1-ORD(tc)));
forcoth(tc) = 1.42;
forcoth(tc)$(ORD(tc) lt 15) = .2604+.125*ORD(tc)-.0034*ORD(tc)**2;

B-2 dice94.gms

$title DICE version 1994 -- with cosmetic revisions

$include dicedata

VARIABLES
C(t) Consumption trillion US dollars
K(t) Capital stock trillion US dollars
I(t) Investment trillion US dollars
D(t) Damage
A(t) Abatement cost
Y(t) Output net abatement and damage costs
Q(t) Gross Output
E(t) CO2-equiv emissions billion t
M(t) CO2-equiv concentration billion t
MIU(t) Emission control rate GHGs
FORC(t) Radiative forcing - W per m2
TE(t) Temperature - atmosphere C
TL(t) Temperature - lower ocean C
UTILITY Maximand;

POSITIVE VARIABLES MIU, E, TE, M, Y, C, K, I;

EQUATIONS
UTIL Objective function
YY(t) Output
AA(t) Abatement
DD(t) Damage
QQ(t) Underlying production function
CC(t) Consumption
KK(t) Capital balance
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KC(t) Terminal condition of K
EE(t) Emissions process
FORCE(t) Radiative forcing equation
MM(t) CO2 distribution equation
TTE(t) Temperature-climate equation for atmosphere
TLE(t) Temperature-climate equation for lower oceans;

CC(t).. C(t) =E= Y(t) - I(t);
YY(t).. Y(t) =E= Q(t) - A(t)*Q(t) - D(t)*Y(t);
AA(t).. A(t) =E= b1 * MIU(t)**b2;
DD(t).. D(t) =E= (a1/9)*SQR(TE(t));
QQ(t).. Q(t) =E= al(t) * L(t)**(1-gamma) * K(t)**gamma;
KK(t).. K(t) =L= (1-dk)**10 * K(t-1) + 10 * I(t-1) + (k0*0.9)$tfirst(t);
KC(tlast).. dk * K(tlast) =L= I(tlast);
EE(t).. E(t) =G= 10 * sigma(t) * (1-MIU(t)) * Q(t);
FORCE(t).. FORC(t) =E= 4.1*(LOG(M(t)/590)/LOG(2)) + forcoth(t);
MM(t).. M(t) =E= 590 + atret*E(t) + (1-deltam)*(M(t-1)-590) + m0$tfirst(t);
TTE(t).. TE(t) =E= TE(t-1)+c1*(FORC(t-1)-lam*TE(t-1)-c3*(TE(t-1)-TL(t-1))) + t0$tfirst(t);
TLE(t).. TL(t) =E= TL(t-1)+c4*(TE(t-1)-TL(t-1)) + tl0$tfirst(t);
UTIL.. UTILITY =E= SUM(t, 10 *rr(t)*L(t)*LOG(C(t)/L(t))/0.55)

+ SUM(tlast, rr(tlast)*(phik*K(tlast)+phim*M(tlast)+phite*TE(tlast)));

* Assign a naive starting point which is in the domain of the functions:

C.L(t) = 1; K.L(t) = 1; I.L(t) = 1; Y.L(t) = 1; Q.L(t) = 1; E.L(t) =1;
M.L(t) = 1; MIU.L(t) = 1; FORC.L(t) = 1; TE.L(t) = 1; TL.L(t) = 1;
UTILITY.L = 1;

* Upper and Lower Bounds for economic reasons or stability

MIU.UP(t) = 0.99; MIU.LO(t) = 0.01; K.LO(t) = 1; TE.UP(t) = 20;
M.LO(t) = 600; C.LO(t) = 2;

MODEL CO2 /all/;
SOLVE CO2 maximizing UTILITY using NLP;

B-3 nlp.gms

$TITLE DICE version 1994 -- NLP Decomposition

$if not set tc $set tc 80
$if not set t $set t 40

scalar kterm /0/;

set tc /1*%tc%/,
t(tc) /1*%t%/;

$include dicedata

alias (t,tp);
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PARAMETER
dref(tc) Reference values of damage
eref(tc) Reference values of emissions
pdref(tc) Reference shadow price on damages
xi(t) Post-terminal damages
grad(tc,t) Local dependence of D(tp) on E(t);

xi(t) = 0;
dref(t) = 0;
grad(tc,t) = 0;
eref(tc) = 0;

VARIABLES
C(t) Consumption trillion US dollars,
K(t) Capital stock trillion US dollars,
I(t) Investment trillion US dollars,
Y(t) Output net abatement and damage costs,
D(tc) Damage,
A(t) Abatement cost,
Q(t) Gross Output,
E(t) CO2-equiv emissions billion t,
MIU(t) Emission control rate GHGs,

UTILITY Maximand;

POSITIVE VARIABLES E, Y, C, K, I, MIU;

EQUATIONS
UTIL Objective function
CC(t) Consumption
YY(t) Output
AA(t) Abatement
QQ(t) Underlying production function
KK(t) Capital balance
DD(t) Damage
EE(t) Emissions process
TERMCAP Terminal capital stock constraint;

CC(t).. C(t) =E= Y(t) - I(t);
YY(t).. Y(t) =E= Q(t) - A(t)*Q(t) - D(t)*Y(t);
AA(t).. A(t) =E= b1 * MIU(t)**b2;
QQ(t).. Q(t) =E= al(t) * L(t)**(1-gamma) * K(t)**gamma;
KK(t).. K(t) =L= (1-dk)**10 * K(t-1) + 10 * I(t-1) + (k0*0.9)$tfirst(t);
EE(t).. E(t) =G= 10 * sigma(t) * (1-MIU(t)) * Q(t);
DD(t).. D(t) =E= dref(t) + SUM(tp, grad(t,tp)/1e6*(E(tp)-eref(tp)));
TERMCAP.. kterm =e= sum(tlast, (1-dk)**10 * K(tlast) + 10 * I(tlast));
UTIL.. UTILITY =E= SUM(t, 10 *rr(t)*L(t)*LOG(C(t)/L(t))/0.55)

- SUM(t, E(t) * xi(t));

* Assign a starting point which is in the domain of the functions:

K.L(t) = k0*0.9 * L(t)/sum(tfirst,L(tfirst));
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Q.L(t) = al(t) * L(t)**(1-gamma) * K.L(t)**gamma;
I.L(t) = (K.L(t+1) - (1-dk)**10*K.L(t)) / 10;
MIU.l(t) = 0.1;
E.L(t) = 10 * sigma(t) * 0.9 * Q.L(t);
A.L(t) = b1 * MIU.L(t)**b2;
D.L(t) = 0;
Y.L(t) = Q.L(t)*(1-A.L(t))/(1 + D.L(t));
C.l(t) = Y.L(t) - I.L(t);
UTILITY.L = 1;

kterm = sum(tlast(t), K.L(tlast) * Y.L(t)/Y.L(t-1));

MIU.UP(t) = 0.99;
MIU.LO(t) = 0.01;
K.LO(t) = 0.1;
C.LO(t) = 0.1;

option nlp=conopt;

model CO2 /all/;
solve CO2 maximizing UTILITY using NLP;

eref(t) = E.L(t);
pdref(t) = -DD.M(t);
LOOP((tlast,tc)$(not t(tc)),
eref(tc) = eref(tlast) * (sigma(tc)*L(tc))/(sigma(tlast)*L(tlast));
pdref(tc) = pdref(tlast) * (L(tc)*rr(tc)) /(L(tlast)*rr(tlast));

);

PARAMETERS
m(tc) CO2-equiv concentration billion t,
forc(tc) Radiative forcing - W per m2,
te(tc) Temperature - atmosphere C,
tl(tc) Temperature - lower ocean C,
deltaE Difference iterval /0.01/;

m(tfirst) = M0;
te(tfirst) = T0;
tl(tfirst) = TL0;

* Generate GAMS code for the climate model:

$onecho >climatemodel.gms
$onuni
loop(tc,

m(tc) = 590 + atret*eref(tc) + (1-deltam)*(m(tc-1)-590) + m0$tfirst(tc);
forc(tc) = 4.1*(LOG(m(tc)/590)/LOG(2)) + forcoth(tc);
te(tc) = te(tc-1)+c1*(forc(tc-1)-lam*te(tc-1)-c3*(te(tc-1)-tl(tc-1))) + t0$tfirst(tc);
tl(tc) = tl(tc-1)+c4*(te(tc-1)-tl(tc-1)) + tl0$tfirst(tc);
dref(tc) = (a1/9) * sqr(te(tc)););

$offecho
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* Generate GAMS code for numerical differencing

$onecho >jacobian.gms
eref(t) = E.L(t);
pdref(t) = -DD.M(t);
LOOP((tlast,tc)$(not t(tc)),
eref(tc) = eref(tlast) * (sigma(tc)*L(tc))/(sigma(tlast)*L(tlast));
pdref(tc) = pdref(tlast) * (L(tc)*rr(tc)) /(L(tlast)*rr(tlast));

);
$include climatemodel

D.L(tc) = dref(tc);
grad(tc,tp) = 0;
loop(tp, eref(tp) = eref(tp) + deltaE;

$include climatemodel
grad(tc,tp) = (dref(tc)-D.L(tc))*1e6 / deltaE;
eref(tp) = eref(tp) - deltaE;);

dref(tc) = D.L(tc);
loop(tlast,
xi(t) = sum(tc$(not t(tc)), grad(tc,t)/1e6*pdref(tc));

);
$offecho

$include climatemodel
solve CO2 maximizing UTILITY using NLP;

parameter itrlog(t,*) Iteration log -- Emission control rate GHGs;
itrlog(t,"iter0") = MIU.L(t);
set iters /iter1*iter6/;
loop(iters,
$include jacobian

solve CO2 maximizing UTILITY using NLP;
itrlog(t,iters) = MIU.L(t);

* Update terminal capital stock:

kterm = sum(tlast(t), K.L(tlast) * Y.L(t)/Y.L(t-1));
);

B-4 mcp.gms

$TITLE DICE version 1994 -- MCP Decomposition

$if not set tc $set tc 60
$if not set t $set t 40

set tc /1*%tc%/,
t(tc) /1*%t%/;

$include dicedata

alias (t,tp); alias (tp,tpp);
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PARAMETER
teref(tc) Reference values of temperature
pdref(tc) Reference present value of damage
grad(tc,t) Local dependence of TE(tp) on E(t),
eref(tc) Reference values of emissions
xi(t) Post-terminal damage value;

VARIABLES
C(t) Consumption trillion US dollars
K(t) Capital stock trillion US dollars
I(t) Investment trillion US dollars
Y(t) Output net abatement and damage costs
D(tc) Damage
A(t) Abatement cost
Q(t) Gross Output
E(t) CO2-equiv emissions billion t
MIU(t) Emission control rate GHGs

PY(t) Output
PQ(t) Underlying production function
PC(t) Consumption
PA(t) Shadow price on abatement cost coefficent
PD(t) shadow price on damage coefficent
PK(t) Capital balance
PE(t) Emissions process
KT Terminal Capital stock,
PKT Shadow price on terminal capital;

POSITIVE VARIABLES MIU, Y, C, K, I, PE;

EQUATIONS
YY(t) Output,
AA(t) Abatement,
DD(t) Damage (linear climate model),
QQ(t) Underlying production function,
CC(t) Consumption,
KK(t) Capital balance,
EE(t) Emissions process,

EQ_C(t) Consumption trillion US dollars,
EQ_K(t) Capital stock trillion US dollars,
EQ_I(t) Investment trillion US dollars,
EQ_Y(t) Output net abatement and damage costs,
EQ_Q(t) Gross Output,
EQ_A(t) Abatement,
EQ_D(t) Damage,
EQ_MIU(t) Emission control rate GHGs
EQ_E(t) CO2-equiv emissions billion t
EQ_PKT Equilibrium for terminal capital market,
EQ_KT Equilibrium for terminal capital stock;
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CC(t).. C(t) =E= Y(t) - I(t);
YY(t).. Y(t) =E= Q(t)*(1-A(t)) - D(t)*Y(t);
AA(t).. A(t) =E= b1 * MIU(t)**b2;
QQ(t).. Q(t) =E= al(t) * L(t)**(1-gamma) * K(t)**gamma;
KK(t).. K(t) =L= (1-dk)**10 * K(t-1) + 10 * I(t-1) + (k0*0.9)$tfirst(t);
EE(t).. E(t) =G= 10 * sigma(t) * (1-MIU(t)) * Q(t);
DD(t).. D(t) =E= (a1/9)*SQR(teref(t) + sum(tp, grad(t,tp)*(E(tp)-eref(tp))));
EQ_C(t).. 10 * rr(t) * L(t) / (0.55*C(t)) =E= PC(t);
EQ_K(t).. K(t) * PK(t) =G=

gamma * PQ(t) * Q(t) + (PK(t+1)+PKT$tlast(t)) * (1-dk)**10 * K(t);
EQ_I(t).. PC(t) =E= 10 * (PK(t+1) + PKT$tlast(t));
EQ_Y(t).. PY(t) * (1+D(t)) =E= PC(t);
EQ_Q(t).. PQ(t) =E= PY(t)*(1-A(t)) - PE(t)*10*sigma(t)*(1-MIU(t));
EQ_E(t).. -PE(t) =E= SUM(tp, PD(tp)*grad(tp,t)* 2 *(a1/9) *

(teref(tp) + SUM(tpp, grad(t,tpp)*(E(tpp)-eref(tpp)))) )
+ SUM(tlast, PD(tlast)*xi(t));

EQ_A(t).. PA(t) + PY(t)*Q(t) =E= 0;
EQ_D(t).. PD(t) + PY(t)*Y(t) =E= 0;
EQ_MIU(t).. -PE(t)*10*sigma(t)*Q(t) =E= PA(t) * b1 * b2 * MIU(t)**(b2-1);
EQ_PKT.. SUM(tlast, 10 * I(tlast) + K(tlast) * (1-dk/100)**10) =E= KT;
EQ_KT.. SUM(tlast(t), I(t)/I(t-1) - Y(t)/Y(t-1)) =E= 0;

MODEL DICEMCP /CC.PC, YY.PY, AA.PA, QQ.PQ, KK.PK, EE.PE, DD.PD, EQ_C.C,
EQ_K.K, EQ_I.I, EQ_Y.Y, EQ_Q.Q, EQ_E.E, EQ_A.A, EQ_D.D, EQ_MIU.MIU,
EQ_KT.KT, EQ_PKT.PKT /;

PARAMETERS
m(tc) CO2-equiv concentration billion t,
forc(tc) Radiative forcing - W per m2,
te(tc) Temperature - atmosphere C,
tl(tc) Temperature - lower ocean C,
deltaE Difference iterval /0.01/;

m(tfirst) = M0;
te(tfirst) = T0;
tl(tfirst) = TL0;

parameter teinit(tc) Tracking of initial temperature trajectory;

* Generate GAMS code for the climate model:

$onecho >climatemodel.gms
$onuni
loop(tc,

m(tc) = 590 + atret*eref(tc) + (1-deltam)*(m(tc-1)-590) + m0$tfirst(tc);
forc(tc) = 4.1*(LOG(m(tc)/590)/LOG(2)) + forcoth(tc);
te(tc) = te(tc-1)+c1*(forc(tc-1)-lam*te(tc-1)-c3*(te(tc-1)-tl(tc-1))) + t0$tfirst(tc);
tl(tc) = tl(tc-1)+c4*(te(tc-1)-tl(tc-1)) + tl0$tfirst(tc);
teref(tc) = te(tc););

$offecho

* Generate GAMS code for numerical differencing
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$onecho >jacobian.gms
eref(t) = E.L(t);
pdref(t) = PD.L(t);
LOOP((tlast,tc)$(not t(tc)),
eref(tc) = eref(tlast) * (sigma(tc)*L(tc))/(sigma(tlast)*L(tlast));
pdref(tc) = pdref(tlast) * (L(tc)*rr(tc)) /(L(tlast)*rr(tlast));

);
$include climatemodel

teinit(tc) = teref(tc);
grad(tc,tp) = 0;
loop(tp, eref(tp) = eref(tp) + deltaE;

$include climatemodel
grad(tc,tp) = (teref(tc)-teinit(tc)) / deltaE;
eref(tp) = eref(tp) - deltaE;);

teref(tc) = teinit(tc);
loop(tlast,
xi(t) = sum(tc$(not t(tc)), grad(tc,t)*2*(a1/9)*

(teref(tc) + sum(tpp, grad(tc,tpp)*(E.L(tpp)-eref(tpp))))*pdref(tc))
/ pdref(tlast);

);

$offecho

K.L(t) = k0*0.9 * L(t)/sum(tfirst,L(tfirst));
Q.L(t) = al(t) * L(t)**(1-gamma) * K.L(t)**gamma;
I.L(t) = (K.L(t+1) - (1-dk)**10*K.L(t)) / 10;
MIU.l(t) = 0.1;
A.L(t) = b1 * MIU.L(t)**b2;
D.L(t) = 0;
Y.L(t) = Q.L(t)*(1-A.L(t))/(1+D.L(t));
C.l(t) = Y.L(t) - I.L(t);
PC.L(t) = 10 * rr(t) * L(t) / (0.55*C.L(t));
PY.L(t) = PC.L(t) / (1+D.L(t));
PQ.l(t) = PY.l(t);
PK.l(t) = PY.l(t);
PA.l(t) = -PY.L(t)*Q.L(t);
PD.l(t) = -PY.L(t)*Y.L(t);
PE.l(t) = -PA.L(t)*b1*b2*MIU.L(t)**(b2-1)/(10*sigma(t)*Q.L(t));
MIU.UP(t) = 0.99;
MIU.LO(t) = 0.01;
KT.L = sum(tlast, K.L(tlast));
PKT.L = sum(tlast, PK.L(tlast)); PKT.UP = +INF;
E.L(T) = 10 * sigma(t) * (1-MIU.L(t)) * Q.L(t);

set diagitr Diagonalization iterations /iter0*iter4/;

LOOP(diagitr,

$INCLUDE jacobian

SOLVE DICEMCP USING MCP;
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);

B-5 mcptax.gms

$TITLE DICE version 1994 -- MCP implementation with taxes

$if not set tk0 $set tk0 0.25

scalar tk0 Baseline capital tax rate /%tk0%/;

scalar g0 Baseline government /1/;

$if not set tc $set tc 60
$if not set t $set t 40

set tc /1*%tc%/,
t(tc) /1*%t%/;

$include dicedata

alias (t,tp); alias (tp,tpp);

PARAMETER
teref(tc) Reference values of temperature
pdref(tc) Reference present value of damage
grad(tc,t) Local dependence of D(tp) on E(t),
eref(tc) Reference values of emissions
xi(t) Post-terminal damage value;

VARIABLES
C(tc) Consumption trillion US dollars
G Government demand
K(t) Capital stock trillion US dollars
I(t) Investment trillion US dollars
Y(t) Output net abatement and damage costs
D(tc) Damage
A(t) Abatement cost
Q(t) Gross Output
E(t) CO2-equiv emissions billion t
MIU(t) Emission control rate GHGs

PY(t) Output
PQ(t) Underlying production function
PC(t) Consumption
PA(t) Shadow price on abatement cost coefficent
PD(t) shadow price on damage coefficent
PK(t) Capital balance
PE(t) Emissions process
TK Capital tax rate
KT Terminal Capital stock,
PKT Shadow price on terminal capital
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RENT(t) Rents on emission permits;

POSITIVE VARIABLES MIU, Y, C, K, I, PE;

EQUATIONS
YY(t) Output,
AA(t) Abatement,
DD(t) Damage (linear climate model),
QQ(t) Underlying production function,
CC(t) Consumption,
KK(t) Capital balance,
EE(t) Emissions process,

EQ_C(t) Consumption trillion US dollars,
EQ_K(t) Capital stock trillion US dollars,
EQ_I(t) Investment trillion US dollars,
EQ_Y(t) Output net abatement and damage costs,
EQ_Q(t) Gross Output,
EQ_A(t) Abatement,
EQ_D(t) Damage,
EQ_MIU(t) Emission control rate GHGs
EQ_E(t) CO2-equiv emissions billion t
EQ_PKT Equilibrium for terminal capital market,
EQ_KT Equilibrium for terminal capital stock
EQ_G Government budget,
EQ_TK Capital tax rate
EQ_RENT(t) Rental rate;

CC(t).. C(t) + G * L(t)/L0 =E= Y(t) - I(t);
YY(t).. Y(t) =E= Q(t)*(1-A(t)) - D(t)*Y(t);
AA(t).. A(t) =E= b1 * MIU(t)**b2;
QQ(t).. Q(t) =E= al(t) * L(t)**(1-gamma) * K(t)**gamma;
KK(t).. K(t) =L= (1-dk)**10 * K(t-1) + 10 * I(t-1) + (k0*0.9)$tfirst(t);
EE(t).. E(t) =G= 10 * sigma(t) * (1-MIU(t)) * Q(t);
DD(t).. D(t) =E= (a1/9)*SQR(teref(t) + sum(tp, grad(t,tp)*(E(tp)-eref(tp))));
EQ_C(t).. 10 * rr(t) * L(t) / (0.55*C(t)) =E= PC(t);
EQ_K(t).. K(t) * PK(t) =G=

gamma*PQ(t)*Q(t)/(1+TK) + (PK(t+1)+PKT$tlast(t)) * (1-dk)**10 * K(t);
EQ_I(t).. PC(t) =E= 10 * (PK(t+1) + PKT$tlast(t));
EQ_Y(t).. PY(t) * (1+D(t)) =E= PC(t);
EQ_Q(t).. PQ(t) =E= PY(t)*(1-A(t)) - PE(t)*10*sigma(t)*(1-MIU(t));
EQ_E(t).. -PE(t) =E= SUM(tp, PD(tp)*grad(tp,t)*2*(a1/9) *

(teref(tp) + sum(tpp, grad(t,tpp)*(E(tpp)-eref(tpp)))))
+ SUM(tlast, PD(tlast)*xi(t));

EQ_A(t).. PA(t) + PY(t)*Q(t) =E= 0;
EQ_D(t).. PD(t) + PY(t)*Y(t) =E= 0;
EQ_MIU(t).. -PE(t)*10*sigma(t)*Q(t) =E= PA(t) * b1 * b2 * MIU(t)**(b2-1);
EQ_PKT.. SUM(tlast, 10 * I(tlast) + K(tlast) * (1-dk/100)**10) =E= KT;
EQ_KT.. SUM(tlast(t), I(t)/I(t-1) - Y(t)/Y(t-1)) =E= 0;
EQ_TK.. G =e= g0;
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EQ_G.. G * SUM(t,L(t)/L0*PC(t)) =E=
TK * sum(t, gamma*PQ(t)*Q(t)/(1+TK)) + SUM(t, RENT(t));

EQ_RENT(t).. RENT(t) =e= PE(t)*E(t) - PY(t)*A(t)*Q(t);

MODEL DICEMCP /CC.PC, YY.PY, AA.PA, QQ.PQ, KK.PK, EE.PE, DD.PD, EQ_C.C,
EQ_K.K, EQ_I.I, EQ_Y.Y, EQ_Q.Q, EQ_E.E, EQ_A.A, EQ_D.D, EQ_MIU.MIU,
EQ_KT.KT, EQ_PKT.PKT, EQ_G.G, EQ_TK.TK, EQ_RENT.RENT /;

PARAMETERS
m(tc) CO2-equiv concentration billion t,
forc(tc) Radiative forcing - W per m2,
te(tc) Temperature - atmosphere C,
tl(tc) Temperature - lower ocean C,
deltaE Difference iterval /0.01/;

m(tfirst) = M0;
te(tfirst) = T0;
tl(tfirst) = TL0;

parameter teinit(tc) Tracking of initial temperature trajectory;

* Generate GAMS code for the climate model:

$onecho >climatemodel.gms
$onuni
loop(tc,

m(tc) = 590 + atret*eref(tc) + (1-deltam)*(m(tc-1)-590) + m0$tfirst(tc);
forc(tc) = 4.1*(LOG(m(tc)/590)/LOG(2)) + forcoth(tc);
te(tc) = te(tc-1)+c1*(forc(tc-1)-lam*te(tc-1)-c3*(te(tc-1)-tl(tc-1))) + t0$tfirst(tc);
tl(tc) = tl(tc-1)+c4*(te(tc-1)-tl(tc-1)) + tl0$tfirst(tc);
teref(tc) = te(tc););

$offecho

* Generate GAMS code for numerical differencing

$onecho >jacobian.gms
eref(t) = E.L(t);
pdref(t) = PD.L(t);
LOOP((tlast,tc)$(not t(tc)),
eref(tc) = eref(tlast) * (sigma(tc)*L(tc))/(sigma(tlast)*L(tlast));
pdref(tc) = pdref(tlast) * (L(tc)*rr(tc)) /(L(tlast)*rr(tlast));

);
$include climatemodel

teinit(tc) = teref(tc);
grad(tc,tp) = 0;
loop(tp, eref(tp) = eref(tp) + deltaE;

$include climatemodel
grad(tc,tp) = (teref(tc)-teinit(tc)) / deltaE;
eref(tp) = eref(tp) - deltaE;);

teref(tc) = teinit(tc);
loop(tlast,
xi(t) = sum(tc$(not t(tc)), grad(tc,t)*2*(a1/9)*(teref(tc)
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+ sum(tpp, grad(tc,tpp)*(E.L(tpp)-eref(tpp))))*pdref(tc)) / pdref(tlast);
);

$offecho

K.L(t) = k0*0.9 * L(t)/sum(tfirst,L(tfirst));
Q.L(t) = al(t) * L(t)**(1-gamma) * K.L(t)**gamma;
I.L(t) = (K.L(t+1) - (1-dk)**10*K.L(t)) / 10;
MIU.l(t) = 0.1;
A.L(t) = b1 * MIU.L(t)**b2;
D.L(t) = 0;
Y.L(t) = Q.L(t)*(1-A.L(t))/ (1 + D.L(t));
C.l(t) = Y.L(t) - I.L(t);
PC.L(t) = 10 * rr(t) * L(t) / (0.55*C.L(t));
PY.L(t) = PC.L(t) / (1+D.L(t));
PQ.l(t) = PY.l(t);
PK.l(t) = PY.l(t);
PA.l(t) = -PY.L(t)*Q.L(t);
PD.l(t) = -PY.L(t)*Y.L(t);
PE.l(t) = -PA.L(t)*b1*b2*MIU.L(t)**(b2-1)/(10*sigma(t)*Q.L(t));
MIU.UP(t) = 0.99;
MIU.LO(t) = 0.01;
KT.L = sum(tlast, K.L(tlast));
PKT.L = sum(tlast, PK.L(tlast)); PKT.UP = +INF;
TK.FX = tk0;
E.L(t) = 10 * sigma(t) * 0.9 * Q.L(t);

set diagitr Diagonalization iterations /iter0*iter4/;

LOOP(diagitr,
$INCLUDE jacobian

SOLVE DICEMCP USING MCP;
);
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