Getting Started with GAMS/MCP

James Markusen Thomas F. Rutherford

October 18, 2004

Introduction to Computable General Equilibrium Modeling with GAMS and MPSGE

University of Colorado, Boulder

Overview

- Installation of GAMS
- Editors for GAMS code
- Some basic GAMS syntax
- Corner solutions and the complementarity format

Installing GAMS

- Execute D:/GAMS MPSGE/systems/win/setup.exe on the GAMS 2.50 CD. This installs:
 - The GAMS system (with a 2-month evaluation license)
 - On-line documentation
 - A model library

Installing GAMS (cont.)

- File handling: model code
 - Project directories
 - Do not work in the GAMS system directories
 - Develop a backup system
- No license file? GAMS then operates in *demo mode*.

Text Editors for GAMS Programming

Model Development \Leftrightarrow Text Hacking

What is the best way to hack text?

Answer: EMACS (or some other professional text editor)

Related issue: *Hysterisis of programming expertise...*

Text Editors for GAMS Programming

- GAMS Integrated Development Environment (GAMS-IDE)
 - User-friendly
 - Helpful tips on "what comes next"
 - Places certain limits on long-term productivity

GAMS' Principles

- Model development and model solution are logically separate activities.
- Your GAMS program should provide a means of documenting your work.
- Focus first on the economics of your model, and think about the interface issues only after the model is running.
- The GAMS model library provides an excellent source of ideas for how to model various economic phenomena.

• Use the on-line documentation:

gams system directory/docs/bigdocs/GAMSUsersGuide.pdf

Model development in GAMS

- 1. Study issues and available data.
- 2. Program a simple pilot model
- 3. Repeat:
 - (i) Debug.
 - (ii) Create *ex-ante tables and graphs*.
 - (iii) Solve scenarios and create reports.

(iv) Look at the results and assess.

(v) Archive.

(vi) Elaborate or modify the model.

The Structure of a Prototypical GAMS Program

- Inputs
 - Sets
 - Data (Parameter and Table statements)
 - Variables Equations Model statement
 - Scenario definitions and Solve statements
 - Display and other reporting statements

The Structure of a Prototypical GAMS Program (cont.)

• Outputs

- Echo prints of benchmark data
- Reference maps of where symbols are used in the program
- Equation listings
- Solver status reports
- Results, includeing display statements, text and Excel report files

GAMS Program Syntax: Key Ideas

- The input format is free form:
 - GAMS ignores blanks and case
 - Tabs are ignored *except in TABLES* where tab stops are assumed (by default) to be set every 8 characters.
 - Semicolons separate GAMS statements

GAMS Program Syntax: Key Ideas (cont)

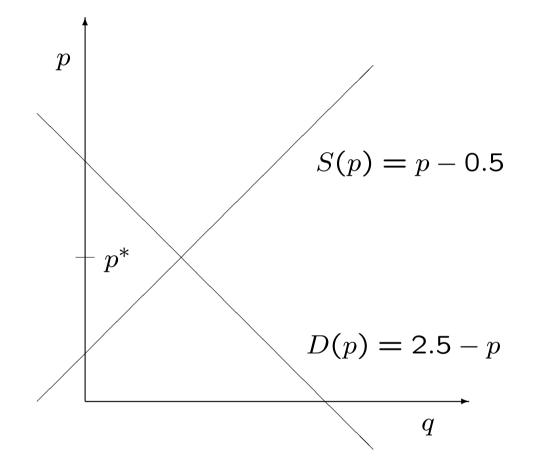
- Good GAMS programmers insert the optional descriptive text wherever it is permitted:
 - *Explanatory text* for sets, set elements, parameters, variables, equations, models.
 - Comment lines, indicated by "*" in the first column, can be inserted to describe the logic underlying assignment statements.
 - Longer commentary can be introduced between \$ontext and \$offtext delimiters.

Two Types of GAMS Statements

Declarative statements: those which define sets, data and the logical structure of models (like Excel).

Procedural statements: those which instruct the computer to undertake a specific set of tasks in a particular sequence (like Visual Basic).

A Simple Example


Use complementarity to solve a competitive market equilibrium model with linear supply and linear demand functions. Assume:

$$D(p) = a - bp$$

$$S(p) = c + dp$$

where a, b, c and d are given parameters.

An equilibrium price p^* solves: S(p) = D(p) ?

GAMS Syntax for this problem:

\$TITLE Single	Commodit	y Market Equilibrium			
VARIABLE	р	Equilibrium price;			
EQUATION	mkt	Market clearance;			
* s(p)	= d(p)			
mkt p - 0.5 =e= 2.5 - p;					
MODEL mkteql /mkt.p/;					
SOLVE mkteql USING MCP;					

GAMS Listing File (mkteql.lst):

1. Source Listing

```
GAMS Rev 139 Intel /MS Window 10/18/04 02:01:38 Page 1
General Algebraic Modeling System
Compilation
```

```
VARIABLE
                 p Equilibrium price;
1
2
3 EQUATION mkt Market clearance;
4
         s(p) = d(p)
5
  *
6
   mkt.. p - 0.5 =e= 2.5 - p;
7
8
9
10
   MODEL mkteql /mkt.p/;
11
12
   SOLVE mkteql USING MCP;
```

2. Equation Listing

General Algebraic Modeling System Equation Listing SOLVE mkteql Using MCP From line 12

---- mkt =E= Market clearance

mkt.. 2*p =E= 3 ; (LHS = 0, INFES = 3 ***)

3. Column Listing

General Algebraic Modeling System
Column Listing SOLVE mkteql Using MCP From line 12

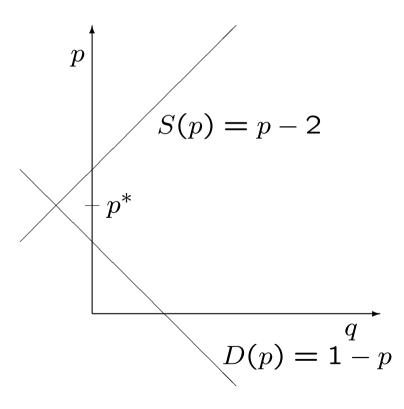
---- p Equilibrium price

р

(.LO, .L, .UP = -INF, 0, +INF) 2 mkt

4. Model Statistics

GAMS Rev 139 Intel	/MS Windo	W	
General Al	gebra	ic Modeling	System
Model Statistics	SOLVE mkt	eql Using MCP From line 3	12
MODEL STATISTICS BLOCKS OF EQUATIONS BLOCKS OF VARIABLES NON ZERO ELEMENTS DERIVATIVE POOL CODE LENGTH			1 1 0 14
GENERATION TIME	=	0.020 SECONDS 2.9 Mb	WIN214-139 Sep 01, 2004
EXECUTION TIME	=	0.020 SECONDS 2.9 Mb	WIN214-139 Sep 01, 2004


5. Solution Report

GAMS Rev 139 Intel /MS Window 10/18/04 02:01:38 Page 5 General Algebraic Modeling System Solution Report SOLVE mkteql Using MCP From line 12 SOLVE SUMMARY MODEL mkteql TYPE MCP SOLVER PATH FROM LINE 12 **** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 1 OPTIMAL RESOURCE USAGE, LIMIT 0.020 1000.000 ITERATION COUNT, LIMIT 0 10000 EVALUATION ERRORS 0 0

Solution Report (cont.)

	LOWER	LEVEL	UPPER	MARGINAL
EQU mkt	3.0000	3.0000	3.0000	1.5000
mkt Market clearance				
	LOWER	LEVEL	UPPER	MARGINAL
VAR p	-INF	1.5000	+INF	•
p Equilibrium price				
**** REPORT SUMMARY :	0 NONOP 0 INFEASIBL 0 UNBOUNDE 0 REDEFINE 0 ERROR	E D D		

The *complementarity formulation* can account for situations in which the equilibrium price or quantity is zero:

To represent this model in GAMS define two variables in addition to p:

- x Equilibrium quantity demanded (= $D(p^*)$ if $D(p^*) > 0$)
- y Equilibrium quantity supplied (= $S(p^*)$ if $S(p^*) > 0$)

We then have the *linear complementarity problem:*

$$y \ge x$$
 $p \ge 0$ $p(y-x) = 0$

$$y \ge S(p)$$
 $y \ge 0$ $y(y - S(p)) = 0$

$$x \ge D(p)$$
 $x \ge 0$ $x(x - D(p)) = 0$

These equations can also be written:

$$y \ge x \perp p \ge \mathbf{0}$$

$$y \ge S(p) \perp y \ge 0$$

$$x \ge D(p) \perp x \ge 0$$

GAMS Syntax for this problem:

\$title Market Equilibrium with Corners

POSITIVE		
VARIABLES	x	Equilibrium demand,
	У	Equilibrium supply,
	р	Equilibrium price;
EQUATIONS		Market clearance, Defines y, Defines x;
supply	y =g= p	- 2;
demand	x =g= 1	- p;
mkt	y =e= x	;
MODEL mkteql /s	upply.y,	<pre>demand.x, mkt.p/;</pre>
SOLVE mkteql US	ING MCP;	

5. Solution Report

GAMS Rev 139 Intel /MS Window10/18/04 02:21:15 Page 6General Algebraic Modeling SystemSolution ReportSOLVE mkteql Using MCP From line 18

supply Defines y
demand Defines x
mkt Market clearance

	LOWER	LEVEL	UPPER	MARGINAL
VAR x		•	+INF	•
VAR y	•	•	+INF	1.0000
VAR p	•	1.0000	+INF	•

- x Equilibrium demand
- y Equilibrium supply
- p Equilibrium price

A Multimarket Example – Part I (Declarative)

```
Sets i canning plants / seattle, san-diego /
j markets / new-york, chicago, topeka / ;
```

Parameters

a(i)	Reference supplies /seattle 350, san-diego 600/,
b(j)	Reference demand /new-york 325, chicago 300, topeka 275/,
esub(j)	Demand elasticities / new-york 1.5, chicago 1.2, topeka 2.0 /,
f	Freight in dollars per case per thousand miles /90/;

Table d(i,j)) distance	in	thousands	of	miles
	new-york		chicago		topeka
seattle	2.5		1.7		1.8
san-diego	2.5		1.8		1.4;

Parameter

```
c(i,j) Transport cost in thousands of dollars per case,
pbar(j) Reference price at demand node j,
report(*,*,*) Summary report;
```

A Multimarket Example – Part II (Declarative)

Positive variab w(i) p(j) x(i,j)	sh sh	adow price adow price aipment qua	e at deman	nd node j,		
Equations						
supply(i) st	upply limit	z at plant	; i,		
fxdeman		xed demand	-			
prdeman	5	rice-respon		0	ket i.	
profit(0 1	ero profit			5,	
<pre>profit(i,j) supply(i)</pre>	w(i) + c(i, a(i) =g= su		-			
<pre>fxdemand(j) prdemand(j)</pre>	•	j)) =g=	b(j);	bar(j)/p(j))**e:	sub(j);
				.	-	6 1

Model fixedqty LP model in MCP format / profit.x, supply.w, fxdemand.p/ ; Model equilqty NLP model in MCP format / profit.x, supply.w, prdemand.p/;

A Multimarket Example – Part III (Procedural)

```
c(i,j) = f * d(i,j) / 1000 ;
```

* Assing initial level values:: p.l(j) = 1; w.l(i) = 1;

* Solve the fixed demand model:

Solve fixedqty using mcp;

report("fixed",i,j) = x.l(i,j); report("fixed","price",j) = p.l(j); report("fixed",i,"price") = w.l(i);

Calibrate the demand functions to the
shadow prices in this equilibrium:

```
pbar(j) = p.l(j);
```

```
* Replicate the fixed demand equilibrium:
```

```
Solve equilqty using mcp;
```

```
report("equil",i,j) = x.l(i,j);
report("equil","price",j) = p.l(j);
report("equil",i,"price") = w.l(i);
```

* Compute a counter-factual equilibrium in * which the cost of shipments from Seattle

```
* to Chicago are reduced by 50\%:
```

```
c("seattle","chicago") = 0.5 * c("seattle","chicago");
```

```
Solve fixedqty using mcp;
report("fixed",i,j) = x.l(i,j);
report("fixed","price",j) = p.l(j);
report("fixed",i,"price") = w.l(i);
```

```
* Compute the same scenario in the fixed demand
* model:
```

```
Solve equilqty using mcp;
report("equil",i,j) = x.l(i,j);
report("equil","price",j) = p.l(j);
report("equil",i,"price") = w.l(i);
```

```
* Display the report:
```

Display report;

Two Types of GAMS Errors

1. *Compilation errors* occur when GAMS is reading your program. An example: a mispelled keyword.

2. *Execution errors* occur when GAMS after your program has been loaded. An example: divide by zero, model fails to solve, your program attempts to evaluate the logarithm of a negative number, etc.

Dealing with Errors in GAMS Programs

- Standard mode of operation for any computer code in the development process is *dysfunction*.
- Two types of errors with GAMS programs: *compilation errors* and *exe- cution errors*.
- Errors are identified by "***" in the listing file.
- Compilation errors often cascade one error causes others.
- Typical causes of GAMS compilation errors are:
 - Missing semicolons
 - Spelling errors, particularly for keywords.
 - Misalligned numbers in tables.

Dealing with Errors in GAMS Programs (cont.)

- Execution errors are most challenging: "short-circuits between the headphones".
- Use debugging output.
- Look at the error code (\$) and its explaination.