
Using GAMS Data Exchange or GDX
Files

Chapter from draft of GAMS User Guide 2002

Bruce A McCarl

GAMS can read or write something called a GDX file. The name GDX is
an acronym for GAMS data exchange files. A GDX file is a platform
independent, binary file that can contain information regarding sets,
parameters, variables and equations. Among other usages GDX files can be
used to prepare data for a GAMS model, pass results of a GAMS model into
different programs, and pass results into GAMS from different programs.
This feature is under current development and is likely to change as time
goes on. This document covers the implementation as of June 2002. There
is also a document on the topic on the GAMS web site called GDX Utilities
by Paul van der Eijk at GAMS.

Creating a GDX file in GAMS ... 2
Command line GDX option - GDX dump of the whole problem 2
GDX files containing selected items .. 3

Execution time selected item GDX file creation 3
Compile time selected item GDX file creation 4

Inputting data from a GDX file into GAMS... 6
Compile time imports from GDX files... 6
Execution time GDX imports ... 9

General notes on GDX files.. 10
Identifying contents of a GDX file ... 11

Identifying contents with $LOAD.. 11
Identifying contents with the IDE... 12
Identifying contents with GDXDUMP... 13
Identifying differences in contents with GDXDIFF............................. 14

Using GDX files to interface with other programs................................... 16
Spreadsheets.. 16

XLIMPORT, XLEXPORT, XLDUMP .. 17
GDXRW ... 17

Other ... 17
Alphabetic list of features ... 18

http://www.gams.com/contrib/GDXUtils.pdf
http://www.gams.com/contrib/GDXUtils.pdf

Creating a GDX file in GAMS

A GDX file can be created by GAMS in two alternative forms

A total problem summary GDX file may be created
A selected item GDX file may be created

Such files are only created on explicit user request although this may be
indirect when a program like XLEXPORT is included which in turn creates
a GDX file.

Now let's review these cases.

Command line GDX option - GDX dump of the whole problem

A composite GDX file containing all data items resident at the end of the run
of a GAMS code can be created using the command line GDX parameter.
The command line GDX option is invoked by adding the option
GDX=filename to the GAMS call either on the command line prompt in
DOS or Unix/Linux or by including it in the command line parameter box in
the IDE. The basic command line form of this is

 gams mymodelname GDX=GDXfilename

where
� mymodelname specifies the name of the file of GAMS instructions
� GDXfilename gives the file name and possible path where the GDX

file is to be retained. When no path is specified the default directory
is the current working directory or project directory in the IDE as
below.

Example

An example of DOS invocation of the whole problem GDX file for the
transport.gms model is given in gamsgdx.bat. When the IDE is used, the
GDX file creation is invoked by an entry in the upper right hand corner of
the IDE screen as illustrated below

 2

Notes

� When this option is used the GDX file is created just at the end of the

GAMS execution so the data written will contain the current values
for all sets, parameters, variables and equations that are on hand at the
end of the GAMS job.

� The GDX data for the variables and equations contains the levels,
marginals, lower and upper bounds and scales for each item.

GDX files containing selected items

Selected items may be placed into a GDX file either at compile time or
during execution. The syntax and effects differ so these are discussed
separately.

Execution time selected item GDX file creation

An EXECUTE_UNLOAD command creates a GDX file containing selected
problem data. The data in the GDX file are those present at the time that the
statement is executed. The results of all prior calculations and the most
recent solve for any model will be reflected.

The basic syntax of the statement is

EXECUTE_UNLOAD 'filename', nameditem1,nameditem2, ... ;

The filename argument specifies the name of the resultant GDX file. In
particular, a file with this name is created with the extension .GDX and is
placed in the current working directory. This opens and closes the GDX file

 3

and does all the writing. Note the execute_unload command overwrites any
existing file with the name filename.GDX so all writing to the file must be
done in one statement.

The second part of the statement is a list of items to be placed in the GDX
file and has several variants. For example, one could use multiple lines and
unload several items with the command structure

EXECUTE_UNLOAD 'filename', nameditem1
 nameditem2,

itemname3
itemname4 ;

It is also possible to have different names for parameters in the GDX file and
the GAMS program. In such a case, the syntax is

EXECUTE_UNLOAD 'filename', internalname1=GDXitemname1 i2=gf2;

and would result in the GAMS item called internalname1 being called
gdxitemname1 in the GDX file and i2 being called gf2. This syntax again
can be repeated for multiple items.

Example

In the model gdxexectrnsport.gms we introduce the statement

 execute_unload 'tran2',i,j,d,f,a=sup,b=dem,x,supply;

The result of this is the writing of the GDX file tran2.GDX that contains the
data for the sets i and j plus the parameters d, f, a and b as well as the
variables x and the equations supply. In that file the a and b items have been
renamed and are identified as sup and dem.

 Compile time selected item GDX file creation

A group of dollar commands can be used to write a GDX file containing
selected data. The data written to the GDX file will be those present when
the statement is encountered during compilation. The results of calculations
and solves will not be reflected. (Note this should not ordinarily be used, it
is safer to use the EXECUTE_UNLOAD as calculations and solves would be
reflected in the result). The only way to guarantee that the data is current is

 4

to use the execution time command or to use a save then restart a file with
the dump commands within them.

The basic syntax involves a three-part sequence

$GDXOUT filename
$UNLOAD itemname
$GDXOUT

The first part of the sequence is the initial $GDXOUT command which also
specifies the filename that the GDX file will be called. A file with this name
will be placed in the current working directory with the extension .GDX.
This opens the GDX file and prepares it for writing. Any existing files with
the same name will be overwritten.

The second part of the sequence is one or more $UNLOAD commands.
These commands specify the items to be placed in the GDX file. A
statement can specify more than one item. For example one would unload
four items with the following commands

$GDXOUT filename
$unload itemname1
$unload itemname2
$unload itemname3
$unload itemname4
$GDXOUT

or could accomplish the same using

$GDXOUT filename
$unload itemname1 itemname2 itemname3 itemname4
$GDXOUT

It is also possible to have different names for parameters in the GDX file as
opposed to the names used in the GAMS program. In such a case the syntax
is

 $unload internalname1=GDXfileitemname1 i2=gf2

which would result in the item with internalname1 being called

 5

gdxfileitemname1 in the GDX file and i2 being called gf2.

The third part of the sequence simply consists of a $GDXOUT command
which closes the GDX file. Actually the statements can be intermixed with
GAMS calculations solves etc. but must eventually be closed with a
$GDXOUT.

Example

In the model GDXtrnsport.gms we introduce the sequence

d(i,j)=d(i,j)*10;
$GDXout tran
$unload i j
$unload d
$unload f
$unload a=dem b=sup
$GDXout

The result of this is a GDX file named tran.GDX that contains the data for
the sets i and j as well as the parameters d, f, a and b. Note that the a and b
items have been renamed dem and sup. Also note the d items will not have
been multiplied by 10 but rather take on their compile time values.

Inputting data from a GDX file into GAMS

Data in a GDX file can be read during a GAMS compile or a
compile/execute sequence. GAMS can only load data from GDX files into
declared items and only on an item by item basis. In addition GDX files are
read when XLIMPORT is included which in turn runs a program that creates
a GDX file with Excel contents and then XLIMPORT reads the Excel data
in that GDX file.

Selected items may be loaded at compile time or during execution. The
syntax differs depending on whether items are read at compile or execution
time so these are discussed separately.

Compile time imports from GDX files

A set of dollar commands can be used to cause GAMS to read data from a

 6

GDX file at compile time. The data read from the GDX file will be the data
present in it at the time that the compile job is begun

The basic syntax involves a three-part sequence

$GDXIN filename
$LOAD itemname
$GDXIN

The first part is an initial $GDXIN command which also specifies the
filename to be used. A file with this filename and the extension .GDX is
looked for in the current working directory. In turn this command opens the
GDX file and prepares it for reading.

The second part of the sequence is one or more $LOAD commands. These
commands specify the items to be read from the GDX file. Several
commands may be used and each line can read more than one item. For
example, one could load several items with the command structure

$GDXIN filename
$load itemname1
$load itemname2
$load itemname3
$load itemname4
$GDXIN

or could use the structure

$GDXIN filename
$load itemname1 itemname2 itemname3 itemname4
$GDXIN

It is also possible to have different names for parameters in the GDX file and
the GAMS program. In such a case the syntax is

 $load internalname1=GDXfileitemname1 i2=gf2

Any parameter data can be loaded as can set data defining domains and
variable/equation data.

 7

The third part of the sequence simply consists of another $GDXIN command
which closes the GDX file. Actually the statements can be intermixed with
GAMS calculations solves etc. but must eventually be closed with a
$GDXIN.

Example

 In the model GDXintrnsport.gms we introduce the sequence

$GDXin tran2
 Sets
 i canning plants
 j markets ;
$load i j
 Parameters
 a(i) capacity of plant i in cases
 b(j) demand at market j in cases;
$load a=sup
$load b=dem
 Parameter d(i,j) distance in thousands of miles;
$load d
 Scalar f freight in dollars per case;
$load f
$GDXin

This loads data from the GDX file named tran2.GDX which was saved by
the example GDXexectrnsport.gms.

Notes

� Items must be declared with Set, Parameter, Scalar, Variable or

Equation statements before the LOAD appears.
� When loading items GAMS does not generate domain checking

compiler errors when items are resident in GDX files for named set
dependent parameters, variables, equations and sets where in the data
there are references to set elements that are not present in the current
file. GAMS will ignore these items and will not create errors or cause
generation of any messages.

� One can import items for set positions that are not in existing sets
where the set specified for that position is equivalent to the universal
set (i.e. when an * is used or a terms equivalenced to the universal set

 8

or the set is a subset of the universal set).
� When the $LOAD is not followed by arguments this causes a listing

of the GDX file contents to be generated.

Execution time GDX imports

An EXECUTE_LOAD command can be used to read data from a GDX file.
The data in the GDX file will be the data present in the GDX file at the time
that the statement is executed and could have been updated by
EXECUTE_UNLOAD commands during the model execution. When
parameter data are loaded the execute_load acts like an assignment
statement, except that it does not merge the data read with the current data; it
is a full replacement. Sets defining domains cannot be loaded. However sets
that are subsets of existing sets and do not define new elements can be
loaded at execution time (Domain defining sets can be loaded can at compile
time using $Load).

The basic syntax of the statement is

EXECUTE_LOAD 'filename', nameditem1,nameditem2, ... ;

The filename argument specifies the name of the GDX file to read. In

particular, a file with this filename with the extension .GDX will be read
from the current working directory.

The second part of the statement is a list of items to be read from the

GDX file. For example one could load several items with the command
structure

EXECUTE_LOAD 'filename', nameditem1
 nameditem2,

itemname3
itemname4 ;

It is also possible to have different names for parameters in the GDX file and
the GAMS program. In such a case the syntax is

EXECUTE_LOAD 'filename', internalname1=GDXitemname1
 internalname2=GDXitemname2;

 9

Example

In the model GDXexecintrnsport.gms we introduce the statement

 execute_load 'tran2',k=j,d,f,a=sup,b=dem,x,supply;

The result of this is that the k subset and the parameters are loaded. We also
get advanced basis information when we load variables and equations.

Notes
� Items must be declared with Set, Parameter, Scalar, Variable or

Equation statements before the LOAD appears.
� When loading data domain checking is not enforced so that when an

item is resident in a GDX file for set elements not present in the
current file these items are ignored and do not create errors or cause
generation of any messages.

General notes on GDX files

There are several things worth noting about GDX files

� Only one GDX file can be open at the same time.
� When the GDX file to be written has the same name as an existing

GDX file the existing file will be overwritten. The resultant file will
only contain the new data; there is no merge or append option.

� A compile time GDX write using the $UNLOAD will only write out
data defined in the compilation at the point where the command
appears. No results of any solves or calculations done within the
current GAMS program will be reported with $LOAD. This is not
true with EXECUTE_UNLOAD.

� An execution time GDX write using the Execute_UNLOAD will
write out data defined in the execution sequence at the point where the
GDX command appears. The results of the most recent solve
command and any parameter calculations occurring before the GDX
write will be reported.

� Any subsequent Execute_UNLOAD to a file written earlier will

 10

totally overwrite that file so care must be taken to write all wanted
information in the last appearing Execute_UNLOAD.

� A command line GDX write using the GDX=filename command line
parameter will write out data defined at the end of the execution
sequence. The results of the most recent solve and any parameter
calculations will be reported.

� When loading data note that domain checking will not be enforced so
that when items are resident in the GDX file for set elements not
present in the current file these items will be ignored. GAMS will not
generate any message to tell you items are ignored.

� Additional examples of GDX loads and unloads can be found in the
library file qp1x and in the all the Performance World examples in the
LINLIB (LP/MIP library) make use of the GDXIN feature.

� Load and unload commands provide an alternative way to load and
unload a basis as opposed to GAMSBAS but in that case every
variable and equation must be unloaded and loaded plus one has to be
willing to stay with the same bounds and scales as they are loaded at
the same time.

Identifying contents of a GDX file

Users may wish to examine the contents of a GDX file. However such files
are binary and thus do not reveal information if text edited. But the GAMS
system provides four ways of accomplishing this, each of which is discussed
below.

Identifying contents with $LOAD

One can have GAMS tell you the general contents of a GDX file by using
the $LOAD command without the name of a parameter. Namely inserting a
sequence like

$GDXin tran2
$load
$GDXin

yields (GDXcontents.gms)

 11

http://www.gams.com/modlib/libhtml/qp1x.htm
http://www.gamsworld.org/performance/performlib.htm

 Content of GDX C:\GAMS\GAMSPDF\BIGONE\TRAN2.GDX
 Number Type Dim Count Name

 1 Set 1 2 i canning plants
 2 Set 1 3 j markets
 3 Parameter 2 6 d distance in thousands of miles
 4 Parameter 0 1 f freight in dollars per case per thousand miles
 5 Parameter 1 2 dem capacity of plant i in cases
 6 Parameter 1 3 sup demand at market j in cases
 7 Variable 2 6 x shipment quantities in cases
 8 Equation 1 2 supply observe supply limit at plant i

which list the items present by Type, Name, Number of sets the item is
defined over(Dim), number of elements in the file for this item (Count).

Identifying contents with the IDE

One can use the GAMS IDE to tell you the exact contents of each item in a
GDX file by opening a GDX file with the Open file dialogue. Namely
opening the file tran2.GDX yields the screen

where the left hand part of the screen gives the items in the GDX field and
the right hand part gives the exact data entries for the item highlighted in the
left hand part. For example moving down to the set i the screens are

 12

Identifying contents with GDXDUMP

GAMS distributes a utility, GDXDUMP, that will write all of the scalars,
sets and parameters (tables) in a GDX file to standard output formatted as a
GAMS program with data statements. It skips information for variables and
equations. The syntax is

GDXDUMP GDXfilename

where the GDXfilename is the name of the GDX file to convert to GMS
form. This output is created to the screen not to a file. If one wishes to
dump this to a file one uses a command like

GDXDUMP GDXfilename > filetouse.gms

Further details and additional options are discussed in the document GDX
Utilities by Paul van der Eijk.

Example

For example when we use the command

GDXDUMP GDXfilename > filetouse.gms

then the contents of filetouse.gms are

* GDX dump of tran2.GDX
* Library version : _GAMS_GDX_V224_2002-03-19
* File version : _GAMS_GDX_V224_2002-03-19
* Producer : GAMS Rev 132 May 25, 2002

 13

http://www.gams.com/contrib/GDXUtils.pdf
http://www.gams.com/contrib/GDXUtils.pdf

* Symbols : 8
* Unique Elements: 5

Set i(*) canning plants/
 seattle ,
 san-diego /;

Set j(*) markets/
 new-york ,
 chicago ,
 topeka /;

Parameter d(*,*) distance in thousands of miles/
 seattle.new-york 25 ,
 seattle.chicago 17 ,
 seattle.topeka 18 ,
 san-diego.new-york 25 ,
 san-diego.chicago 18 ,
 san-diego.topeka 14 /;

Scalar f freight in dollars per case per thousand miles/
 90 /;

Parameter dem(*) capacity of plant i in cases/
 seattle 350 ,
 san-diego 600 /;

Parameter sup(*) demand at market j in cases/
 new-york 325 ,
 chicago 300 ,
 topeka 275 /;

* skipped Variable x

* skipped Equation supply

where note the variable and equations are skipped at the bottom.

Identifying differences in contents with GDXDIFF

GAMS also distributes a utility that looks for differences in two GDX files
creating a list of itemnames that differ and yet another GDX file that exactly
specifies the differences.

The procedure is run from the DOS or Unix/Linux command line and is
invoked as follows

GDXDIFF GDXfile1 GDXfile2 GDXdiffilename Eps=value

where

� GDXfile1 and GDXfile2 give the names of the GDX files to compare
� GDXdiffilename is an optional parameter naming the GDX file of

differences that will be created (This will be named diffile.GDX and
placed in the current directory by default.)

 14

� Eps is an optional parameter giving the minimum difference that must
be found between two numbers to signal a difference.

Further details and examples are discussed in the document GDX Utilities
by Paul van der Eijk.

Example

Suppose we wish to compare the GDX files Tran and Tran2, then we would
use the command

 GDXDIFF tran tran2

In turn the output to standard output (nominally the terminal screen) appears
as follows

Summary of differences:
 d Data is different
 dem Keys are different
 sup Keys are different
supply Symbol not found in file 1
 x Symbol not found in file 1

and summarizes the differences found. Simultaneously the file diffile.GDX
when examined in the IDE contains the following

which reports on the differences found in the two files. A second example

 15

http://www.gams.com/contrib/GDXUtils.pdf
http://www.gams.com/contrib/GDXUtils.pdf

for the dem parameter is

Notes

� Some new coding is introduced in the difference GDX file. Namely a

new dimension is added to the parameters being compared which can
contain 4 entries
¾ dif1 indicates that the entry occurs in both files and shows the

value found in the first file.
¾ dif2 indicates that the entry occurs in both files and shows the

value found in the second file.
¾ ins1 indicates that the entry only occurs in the first files and shows

the value found.
¾ ins2 indicates that the entry only occurs in the second file and

shows the value found
� Only named items with the same name, type and dimension will be

compared in the diffile.GDX output. Named items that are new or are
deleted will only appear in the standard output summary report.

Using GDX files to interface with other programs

The very name GDX – GAMS data exchange suggests this is the mechanism
via which users will be able to exchange data with other programs. Today
however this usage, while contemplated, is still under development and only
exists for selected cases. In particular, there are mechanisms for
spreadsheets and a couple of other programs. Let me briefly cover these.

Spreadsheets

There are currently two GDX supported pathways for data exchange to

 16

spreadsheets.

XLIMPORT, XLEXPORT, XLDUMP

Tom Rutherford and associates at the University of Colorado created a
family of Excel routines which are documented on his web page and
discussed further in the spreadsheet chapter of this document. These
routines send data from GAMS to Excel spreadsheets (XLEXPORT,
XLDUMP) and retrieve data from the Excel spreadsheet (XLIMPORT).
Originally these data were passed by usage of put files and by a program that
inserted the data in Excel. In 2002 these were reimplemented using GDX
files and the program discussed in the next section.

One difference is that GDX files are not directly read by GAMS but rather
the data are sent to text files that are in turn included so that domain
checking is active. This also means that $LOAD must be used so only
compile time imports are being done in XLIMPORT. However the
XLEXPORT and XLDUMP are implemented using the
EXECUTE_UNLOAD so execution time results are sent to the spreadsheet.

GDXRW

GAMS has written a utility that reads and writes Excel spreadsheet data
using the GDX file in doing the data exchange. The program is called
GDXXRW and can

� read multiple ranges from a spreadsheet writing the data to a GDX

file,
� read from a ‘GDX’ file, and write the data to different ranges in a

spreadsheet.
This program is the one used in the GDX implementation of the Rutherford
utilities. The input is rather involved and is described in a document "GDX
Utilities".

Other

Utilities for other types of exchanges are now under development as is a
general set of procedures for reading and writing GDX files. Users needing
to do such exchanges should contact GAMS Development.

 17

http://debreu.colorado.edu/xllink/xllink.htm
http://www.gams.com/contrib/GDXUtils.pdf
http://www.gams.com/contrib/GDXUtils.pdf
mailto:support@gams.com

Alphabetic list of features

= Symbol to rename entries in GDX files
Dif1, dif2 Markings that indicates difference in entries

in GDX files.
Domain checking Lack of when reading GDX files
Execute_load Execution time GDX file element reading
Execute_unload Execution time GDX file creation
Gdx GAMS data exchange file
Gdx Creating GDX files with command line

parameter
Gdx Selected item GDX file
Gdx Whole problem GDX file
Gdx Viewing GDX files in the GAMS IDE
Gdx file Creating a GDX file in GAMS
Gdxdiff Utility to compare contents differences in

two GDX files
Gdxdump Utility to write out contents of GDX file in

GAMS format
$Gdxin Compile time GDX file naming, opening

and closing
$Gdxout Compile time GDX file naming, creation

and closing
$Gdxout Problems with compile time write to GDX
Gdxrw Utility to read and write from a GDX file

and a spreadsheet
IDE Viewing GDX files in the GAMS IDE
Ins1, ins2 Markings that indicates insetrts or deletions

in GDX files.
$Load Compile time read from GDX file element

identification
$Load Listing GDX file contents
$Unload Compile time write to GDX file element

identification
$Unload Problems with compile time write to GDX
Xldump Libinclude file that uses GDX to export data

to a spreadsheet
Xlexport Libinclude file that uses GDX to export data

 18

 19

to a spreadsheet
Xlimport Libinclude file that uses GDX to import data

from a spreadsheet

	Using GAMS Data Exchange or GDX Files
	Creating a GDX file in GAMS
	Command line GDX option - GDX dump of the whole problem
	
	
	
	
	
	Example
	Notes

	GDX files containing selected items
	Execution time selected item GDX file creation
	
	
	
	
	Example

	Compile time selected item GDX file creation
	
	
	
	
	Example

	Inputting data from a GDX file into GAMS
	
	Compile time imports from GDX files
	
	
	
	
	Example
	Notes

	Execution time GDX imports
	
	
	
	
	Example
	Notes

	General notes on GDX files
	Identifying contents of a GDX file
	Identifying contents with $LOAD
	Identifying contents with the IDE
	Identifying contents with GDXDUMP
	
	
	
	
	
	Example

	Identifying differences in contents with GDXDIFF
	
	
	
	
	
	Example
	Notes

	Using GDX files to interface with other programs
	Spreadsheets
	XLIMPORT, XLEXPORT, XLDUMP
	GDXRW

	Other

	Alphabetic list of features

