A Synthetic Gas Network

October 18, 2004

1 Geography

We consider a gas network in which supply nodes are randomly distributed on a circle of radius one. Markets in which gas is sold are then randomly distributed within the square area enscribed by this circle. There is a subtle challenge involved in producing an “interesting” prototypical pipeline network. The network needs to be constructed in such a way to assure feasibility of supply and a reasonable level of interconnectedness between markets. Linear programming provides a convenient way to construct such a network.

2 Calibration

The network structure is calibrated to assure feasible flows using “constructed transport costs” which generate geographically distributed network flows within the demand region and relatively few long-distance flows. Transport costs are constructed as:

\[
c_{ij} = D_{ij}^2 \left(1 - \frac{\delta_{ij}}{2}\right)
\]

where \(\delta_{ij}\) takes on values of 1 or 0 with \(\delta_{ij} = 1\) representing a randomly generated set of arcs between points separated by a distance of less than 0.5.

The synthetic transport costs are used to solve for a feasible network flows in the following linear program:

\[
\max \sum_{ij} c_{ij}x_{ij} + \sum_{jk} c_{jk}y_{jk}
\]

subject to:

\[
\sum_{i} x_{ij} + \sum_{k} y_{kj} = \bar{d}_j + \sum_{k} y_{jk}
\]

\[
\bar{s}_i \geq \sum_{j} x_{ij}
\]
3 Equilibrium

We use the solution to the constructed linear program to define the supply network links, \(\delta_{ij} = \{x_{ij}^* > 0\} \) and \(\delta_{jk} = \{y_{jk}^* > 0\} \). Having determined the network structure we then compute a spatial price equilibrium in which transport costs \(t_{ij} \) are defined with respect to “crow-flies distance” rather than the constructed transport costs, \(c_{ij} \):

1. Market clearance at supply nodes and markets:

\[
s_i = \sum_{j|\delta_{ij}} x_{ij}
\]
\[
\sum_{i|\delta_{ij}} x_{ij} + \sum_{k|\delta_{kj}} y_{kj} = d_j + \sum_{k|\delta_{jk}} y_{jk}
\]

2. Calibrated demand and supply:

\[
d_j = d_j p_j^e\]
\[
s_i = s_j w_i^\eta
\]

3. Transport arbitrage:

\[
w_i + t_{ij} \geq p_j
\]
\[
p_j + t_{jk} \geq p_k
\]
Figure 1: Network Flows in the Benchmark Linear Program
Figure 2: Equilibrium Flows on the Constructed Network
$title A Random Gas Network Model

* A network is defined by nodes and connecting arcs:

set
i Gas supply nodes /i1*i10/,
j Gas markets /j1*j200/,
ij(i,j) Supply-demand links,
jk(j,j) Demand-demand links;

alias (j,k);

* The input data are obtained in the form of reference price-quantity pairs for all supply and demand functions:

parameter
s0(i) Reference supply,
d0(j) Reference demand,
epsilon(j) Elasticity of demand,
eta(i) Elasticity of supply,
utc(*,*) Transport costs,
theta(i) Location for supplier,
lon(*) Longitude,
lat(*) Latitude;

* Generate some random data:

eta(i) = uniform(0,2);
epsilon(j) = uniform(-2,-0.2);

* Randomly distribute supply points on a circle of radius one centered at (1,1):

theta(i) = uniform(0,2) * 3.141592;
lon(i) = 1 + cos(theta(i));
lat(i) = 1 + sin(theta(i));

* Place demand nodes within the enscribed square:

lon(j) = 1-sqrt(1/2) + uniform(0,2*sqrt(1/2));
lat(j) = 1-sqrt(1/2) + uniform(0,2*sqrt(1/2));

* Define the "crow-flies distances":

utc(i,j) = sqrt((lon(i)-lon(j))^2 + (lat(i)-lat(j))^2);
utc(k,j) = sqrt((lon(k)-lon(j))^2 + (lat(k)-lat(j))^2);

* Generate benchmark supplies and demands, leaving a 5% margin to assure sufficient supply to match demand:

s0(i) = uniform(1,5);
d0(j) = uniform(1,5);
d0(j) = d0(j) * sum(i,s0(i))/sum(k,d0(k)) * 0.95;

* Define a random "target network" of flows, randomly selecting arcs from pairs of points which are separated by a distance of 0.25 or less:

ij(i,j)$ (utc(i,j) < 0.25) = yes$$ (uniform(0,1) > 0.25);
\begin{verbatim}
jk(j,k)$(utc(j,k) < 0.25) = yes$(uniform(0,1) > 0.25);
jk(j,j) = no;

* If utc() is used in the calibrate LP we produce a network
* with too many long arcs. Using square of distance assures
* that the resulting network has shorter distances on each
* link. The randomly ij() and jk() networks are used to
* target a randomly generated network:

parameter c(*,j) Synthetic transport cost;
c(i,j) = utc(i,j)**2 * (1 - 0.5$ij(i,j));
c(j,k) = utc(j,k)**2 * (1 - 0.5$jk(j,k));

* Generate flows in a LP which is always going to be feasible:
variables x(i,j) Supply from nodes i to market j
y(j,k) Transhipment from market j to market k
tcost Transport cost;
positive variables x,y;
equations
cost Transport cost definition,
demand(j) Demand at node j,
supply(i) Supply at node i;
cost.. tcost =e= sum((i,j), c(i,j) * x(i,j)) + sum((j,k), c(j,k) * y(j,k));
demand(j).. sum(i, x(i,j)) + sum(k, y(k,j)) =e= d0(j) + sum(k, y(j,k));
supply(i).. s0(i) =g= sum(j, x(i,j));

* Avoid degeneracy by preventing flows from a node to itself:
y.fx(j,j) = 0;
model gtmcalib /all/;
solve gtmcalib using nlp minimizing tcost;

* Generate a LaTeX file with the network geometry:
$onecho >network.tex
\documentclass[epic,eepic]{article}
\usepackage{epic,eepic}
\begin{document}
\begin{figure}[p]
\caption{Network Flows in the Benchmark Linear Program}
\begin{center}
\setlength{\unitlength}{4cm}
\begin{picture}(2.5,2.5)
\offecho
file ktex /network.tex/; put ktex; ktex.nw=0; ktex.nd=3; ktex.ap=1;
put '\put(1,1){\circle{2}}'/;
put '\dottedline[.05]{0.05}((1-sqrt(1/2)),(1-sqrt(1/2)),(1-sqrt(1/2)),(1-sqrt(1/2)))/';
$offecho
\end{picture}
\end{center}
\end{figure}
\end{document}
\end{verbatim}
Define the gas network based on the LP solution:
\[ij(i,j) = \text{yes} \]
\[jk(j,k) = \text{yes} \]
* Create a randomly connected network:

\[
\text{positive variables} \\
\quad d(j) \quad \text{Market demand,} \\
\quad p(j) \quad \text{Market price,} \\
\quad w(i) \quad \text{Supply price (marginal cost);} \\
\]
\[
\text{equations} \\
\quad \text{db, dd, pmc, xprofit, yprofit;} \\
\quad \text{db(j)[..]} \quad \sum(i\text{~ij}(i,j), x(i,j)) + \sum(k\text{~jk}(k,j), y(k,j)) \\
\quad \quad = d(j) + \sum(k\text{~jk}(j,k), y(j,k)); \\
\quad dd(j)[..] \quad d(j) = p(j) \bullet \text{epsilon(j);} \\
\quad pmc(i).. \quad s0(i) \bullet w(i) \bullet \text{eta}(i) = \sum(j\text{~ij}(i,j), x(i,j)); \\
\quad xprofit(ij(i,j)).. \quad w(i) + utc(i,j) = p(j); \\
\quad yprofit(jk(j,k)).. \quad p(j) + utc(j,k) = p(k); \\
\]
* Avoid bad function calls:
\[p.l(j) = 0.01; w.l(i) = 0.01; \]
\[y.fx(j,j) = 0; \]
* Define the complementarity problem here:
model random /db.p, dd.d, pmc.w, xprofit.x, yprofit.y/;
solve random using mcp;

* Generate a second network graph based on the resulting equilibrium flows:
put ktex;
**put '\\begin{figure}[p]'*/
**'\\caption{Equilibrium Flows on the Constructed Network}'*/
**'\\begin{center}'*/
**'\\setlength{\unitlength}{4cm}'*/
**'\\begin{picture}(2.5,2.5)'*/;
**put '\put(1,1)\circle{2}''*/;
**put '\\\dottedline[.]{0.05}(\text{1-sqrt(1/2)},\text{1-sqrt(1/2)}), (\text{1-sqrt(1/2)},\text{1-sqrt(1/2)}),(\text{1-sqrt(1/2)},\text{1-sqrt(1/2)}) (\text{1-sqrt(1/2)},\text{1-sqrt(1/2)}),'*/

\begin{figure}
\centering
\begin{picture}(2.5,2.5)
\put(1,1){\circle{2}}
\dottedline[.]{0.05}((1-sqrt(1/2)),',',(1-sqrt(1/2)),')((1+sqrt(1/2)),',',(1-sqrt(1/2)),')((1+sqrt(1/2)),',',(1+sqrt(1/2)),')((1-sqrt(1/2)),',',(1+sqrt(1/2)),')((1-sqrt(1/2)),',',(1-sqrt(1/2)),')
\end{picture}
\end{center}
\end{figure}

y.up(j,k) = uniform(0.8,1) * y.l(j,k);
solve random using mcp;
The Gas Trade Model (GTM) models interrelated gas markets. Prices may be free to move as to equilibrate supplies and demand. Disequilibria can be introduced with controls over prices and/or quantities traded.

\section*{Sets}

\begin{itemize}
 \item \textbf{i} Supply Regions
 \begin{itemize}
 \item mexico, alberta-bc, atlantic, appalacia, us-gulf, mid-cont, permian-b, rockies, pacific, alaska /
 \end{itemize}
 \item \textbf{j} Demand regions
 \begin{itemize}
 \item mexico, west-can, ont-quebec, atlantic, new-engl, ny-nj, mid-atl, south-atl, midwest, south-west, central, n-central, west, n-west /
 \end{itemize}
 \item \textbf{fx(j)} Regions with fixed demand
 \begin{itemize}
 \item mexico, west-can, ont-quebec, atlantic /
 \end{itemize}
 \item \textbf{ij(i,j)} Feasible trade links;
\end{itemize}

\section*{Table sdat(i,*) supply data}

<table>
<thead>
<tr>
<th></th>
<th>ref-p1</th>
<th>ref-q1</th>
<th>ref-p2</th>
<th>ref-q2</th>
<th>limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>mexico</td>
<td>2.0</td>
<td>.5</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alberta-bc</td>
<td>3.0</td>
<td>1.6</td>
<td></td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>atlantic</td>
<td>.25</td>
<td>.03</td>
<td>.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>appalacia</td>
<td>3.5</td>
<td>.58</td>
<td>7.0</td>
<td>.65</td>
<td>.72</td>
</tr>
<tr>
<td>us-gulf</td>
<td>3.5</td>
<td>7.88</td>
<td>7.0</td>
<td>8.82</td>
<td>9.75</td>
</tr>
<tr>
<td>mid-cont</td>
<td>3.5</td>
<td>2.07</td>
<td>7.0</td>
<td>2.31</td>
<td>2.55</td>
</tr>
<tr>
<td>permian-b</td>
<td>3.5</td>
<td>1.39</td>
<td>7.0</td>
<td>1.55</td>
<td>1.72</td>
</tr>
<tr>
<td>rockies</td>
<td>3.5</td>
<td>1.16</td>
<td>7.0</td>
<td>1.30</td>
<td>1.44</td>
</tr>
<tr>
<td>pacific</td>
<td>3.5</td>
<td>.42</td>
<td>7.0</td>
<td>.47</td>
<td>.52</td>
</tr>
<tr>
<td>alaska</td>
<td>2.0</td>
<td>.80</td>
<td>2.0</td>
<td>.1</td>
<td>inf</td>
</tr>
</tbody>
</table>

\section*{Table ddat(j,*) demand data}

<table>
<thead>
<tr>
<th></th>
<th>ref-p</th>
<th>ref-q</th>
<th>elas</th>
<th>tax</th>
<th>ex-dem</th>
</tr>
</thead>
<tbody>
<tr>
<td>mexico</td>
<td>1.0</td>
<td>2.2</td>
<td>-.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>west-can</td>
<td>3.0</td>
<td>1.47</td>
<td>-.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ont-quebec</td>
<td>3.5</td>
<td>1.38</td>
<td>-.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atlantic</td>
<td>3.5</td>
<td>.20</td>
<td>-.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new-engl</td>
<td>9.37</td>
<td>.76</td>
<td>-.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ny-nj</td>
<td>8.33</td>
<td>1.18</td>
<td>-.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mid-atl</td>
<td>8.26</td>
<td>.89</td>
<td>-.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
south-atl 8.07 1.62 -.89
midwest 8.01 2.96 -.65
south-west 7.29 6.04 -.84
central 7.79 1.17 -.67
n-central 8.06 1.51 -.54
west 8.18 2.10 -.43
n-west 9.39 .36 -.57

parameters d0(j) Reference demand,
p0(j) Reference price,
epsilon(j) Elasticity of demand;

d0(j) = ddat(j,"ref-q");
p0(j) = ddat(j,"ref-p");
epsilon(j) = ddat(j,"elas");

Parameters supa(i) supply constant a
supb(i) supply constant b
supc(i) supply capacity;

supc(i) = sdat(i,"limit");
supb(i) = ((sdat(i,"ref-p1")-sdat(i,"ref-p2"))
/(1/(supc(i)-sdat(i,"ref-q1"))-1/(supc(i)-sdat(i,"ref-q2"))))
supa(i) = sdat(i,"ref-p1") - supb(i)/(supc(i)-sdat(i,"ref-q1"));
* We rely on supa(i) evaluating to exactly zero in some cases

supa(i) = round(supa(i),4);
supc(i)$(supc(i) eq inf) = 100;
sdat(i, "sup-a") = supa(i); sdat(i, "sup-b") = supb(i); display sdat;

Table utc(i,j) unit transport cost ($ per mcf)
x
mexico 0.25 2.29
atlantic 1.00
alberta-bc 0.40 0.90 1.15 1.10
us-gulf 2.12 1.08

+ mid-atl south-atl midwest south-west central
mexico 2.22 2.03 1.96 1.25
alberta-bc 1.10 1.55 0.80 1.25 0.80
appalachia 0.72 0.46
us-gulf 1.01 0.82 0.75 0.04 0.54
mid-cont 0.86 0.14 0.64
permian-b 0.83 0.77 0.05 0.55
rockies 0.53 0.31
alaska 6.00

+ n-central west n-west
mexico 2.13
alberta-bc 0.65 0.70 0.65
permian-b 0.94
rockies 0.58 0.70 1.91
Table pc(i,j) pipeline capacities (tcf)

<table>
<thead>
<tr>
<th></th>
<th>mexico</th>
<th>west-can</th>
<th>ont-quebec</th>
<th>atlantic</th>
<th>new-engl</th>
<th>ny-nj</th>
<th>mid-Atl</th>
<th>south-atl</th>
<th>midwest</th>
<th>south-west</th>
</tr>
</thead>
<tbody>
<tr>
<td>mexico</td>
<td>inf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alberta-bc</td>
<td>inf</td>
<td>inf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atlantic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>inf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>appalacian</td>
<td></td>
</tr>
<tr>
<td>us-gulf</td>
<td>inf</td>
<td>inf</td>
<td>inf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mid-cont</td>
<td></td>
<td></td>
<td>inf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>permian-b</td>
<td></td>
<td></td>
<td>inf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rockies</td>
<td></td>
<td></td>
<td>inf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alaska</td>
<td></td>
<td></td>
<td>inf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SETS check1(i,j) Supply links with zero cost and non-zero capacity
check2(i,j) Supply links with nonzero cost but zero capacity

check1(i,j) = yes$(utc(i,j) eq 0 and pc(i,j) ne 0);
check2(i,j) = yes$(utc(i,j) ne 0 and pc(i,j) eq 0);

DISPLAY check1, check2;

Create a tuple defining the feasible links:
i(i,j) = yes$pc(i,j);

Variables

x(i,j) shipment of natural gas (tcf)
s(i) regional supply (tcf)
d(j) regional demand (tcf)
w(i) Supply price ($ per mcf)
p(j) Demand price ($ per mcf);

Positive Variables x, s, d, p, w;

Equations

sb(i) Supply balance (tcf)
db(j) Demand balance (tcf)
dd(j) Demand function defined
pmc(i) Price-marginal cost
profit(i,j) Transportation profit;

sb(i).. s(i) =g= sum(j$ij(i,j), x(i,j));
db(j).. sum(i$ij(i,j), x(i,j)) =g= d(j);
dd(j).. d(j) =e= d0(j) * (p(j)/p0(j))**epsilon(j);

profit(i,j).. supa(i) + supb(i)/(supc(i)-s(i)) =g= w(i);
profit(ij(i,j)).. \quad w(i) + utc(i,j) =g= p(j);

p.l(j) = p0(j);
d.l(j) = 0.d0(j);
d.fx(j)$fx(j) = d0(j);
w.l(i) = 1;
s.l(i) = sdat(i,"ref-q1");

p.lo(j) = 0.01;
s.up(i) = supc(i) - 0.0001;

model gtmmcp Gas trade model / sb.w, db.p, dd.d, pmc.s, profit.x /;
solve gtmmcp using mcp;

parameter echoprint Report of values;

echoprint(i,"s") = s.l(i);
echoprint(i,"supa") = supb(i);
echoprint(i,"supb") = supb(i);
echoprint(i,"supc") = supc(i);
display echoprint;