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The Message

• Integrated assessment models for climate policy design can

be decomposed using a linear approximation of the climate

system.

• This permits models of the economic and natural science

components to be processed independently on different time

scales.

• Turnpike properties of Ramsey growth model permit a precise

representation of post-terminal emissions and to reduce the

requisite economic horizon.



• Decomposition accommodates economic modelling in a com-

plementarity format thereby providing a means of incorporat-

ing second-best effects, e.g. distortionary taxes.



Integrated Assessment

Integrated models of climate and economy:

• First appeared in the 1980s as a paradigm for integrating

science and economic policy instruments to study complex

environmental issues.

• Combine complementarity knowledge from various discplines

to produce informed policy analysis.

• Early example: RAINS model of acidification in Europe (Al-

camo et al., 1985)



• Variety of models have been developed to study greenhouse

issues (see Weyant et al. 1996, Parson and Fisher-Vanden

1997 and Kelly and Kolstad 1999).

• Nordhaus, Peck and Tysberg, and Manne and Richels in the

1990s.





Two Types of Integrated Assessment Models

1. Policy simulation models for assessment of specific measures

(e.g. IMAGE by Rotmans), and

2. Policy optimization models, which seek to characterize opti-

mal policies. (e.g., DICE by Nordhaus or MERGE by Manne

and Richels).



Two Difficulties with Policy Optimization IAMs

1. Existing integrated assessment models must be solved over a

long time horizon to provide a consistent accounting of both

the costs and benefits of climate policy measures.

2. These models are typically solved as centralized planner op-

timization programs which do not readily admit second-best

effects such as pre-existing taxation.



Our Contributions

1. We demonstrate that a tangent approximation of the the

climate system provides a excellent means of decomposing

integrated assessment models,

2. When the climate system is thus approximated, the economic

model can be formulated:

(a) over policy-relevant time horizon,

(b) in a complementarity format which accomodates a wider

range of econmic complexities (e.g., more goods, more

regions, technical change, tax revenue recycling etc.)



3. When an IAM is decomposed, it becomes a simple matter to

compare results from alternative climate/economic compo-

nents.



A Canonical Integrated Assessment Model

A stylized optimizing IAM model:

max
∞∑

t=0

(
1

1 + ρ

)t

U(Ct, Dt) (1)

s.t. Ct = F (Kt, Dt, Et)− It

Kt+1 = (1− δ)Kt + It

K0 = K̄0

In which:

ρ is the discount rate,

U denotes instantaneous utility reflecting both final consumption and the
disutility of climate damages,

Ct represents consumption in period t,



F characterizes aggregate production in period t as a function of capital,
damages (with potentially adverse effects on productivity), and emissions,

Kt is the capital stock in period t (with K0 = K̄0 as the initial capital stock),

Et are emissions in period t,

It is investment in period t,



T E
t = H(St)

St+1 = G(St, Et)
Dt = Dt(T E

t )
S0 = S̄0

In which:

T E
t is the global mean temperature in period t,

H describes the functional relationship between the climate state and tem-
perature,

St is a vector of the climate state (with

Dt denotes damages of climate change in period t, S0 = S̄0 as the initial
climate state), and

G characterizes the motion of the climate state as a function of the previous
climate state and current anthropogenic emissions.



Approximation

Merge the relationships T E
t = H(St) and St+1 = G(St, Et) into a single equiv-

alent equation

T E
t = Γt(S0, E0, E1, ..., Et−1),

where Γt relates temperature in period t as a function of the initial climate
state and emissions in all previous periods.

Then compute a linear approximation of the climate response:

T E
t ≈ T̄ E

t +
t∑

τ=0

γtτ(Eτ − Ēτ)

For a simple application, we can do this by “brute force”:

γtτ ≈ T̄ E
t − Γt(S0, E0, ..., Ēτ + ε, ..., Ēt−1)

ε
.





Comments

• Numerical differencing is only computationally tractable for
small-scale climate models with solution times measured in
seconds, however for larger scale models adjoint codes may
be used for the same purpose.

• A benefit we perceive is that we can use this approach to
provide a decomposition of the relative importance of climate
and economic models in a given policy assessment.

• A more subtle advantage of the decomposition relates to
differences in the nature of time scales for economic and
climate models.



The DICE Climate Model

parameters
E(t) Anthropogenic carbon emissions (economic input)

m(t) CO2-equiv concentration billion t
forc(t) Radiative forcing - W per m2
forcoth(tc) Exogenous forcings from other greenhouse gases,
te(t) Temperature - atmosphere C
tl(t) Temperature - lower ocean C
termv Terminal value of atmophere
deltaE Difference iterval /0.001/;

m(t) = m0; te(t) = t0; tl(t) = tl0; forcoth(tc) = 1.42;

loop(t,
m(t) = 590 + atret*E(t) + (1-deltam)*(m(t-1)-590) + m0$tfirst(t);
forc(t) = 4.1*(LOG(m(t)/590)/LOG(2)) + forcoth(t);
te(t) = te(t-1)+c1*(forc(t-1)-lam*te(t-1)-c3*(te(t-1)-tl(t-1))) + t0$tfirst(t);
tl(t) = tl(t-1)+c4*(te(t-1)-tl(t-1)) + tl0$tfirst(t);
teref(t) = te(t);

);



Post-Terminal Projection

The Ramsey model, which provides the basis for nearly all policy-oriented
IAMs, is an “exogenous growth model” (see Barro and Sala-i-Martin, Chapter
2).

Policy measures affect levels but not growth rates.

We can therefore easily extrapolate carbon emissions from the terminal period
off the end of the model:
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Using GNUPLOT from GAMS

set t Time periods in the model /0*40/;
tlbl(t) Labels for the graph / 0 1990, 10 2000, 20 2010, 30 2020, 40 2030/;

parameter a(t,*) My model output;

... a(t,*) is loaded from your GAMS model.

$setglobal labels decade

* Here are the GNUPLOT commands:

$setglobal gp_opt1 "set size 0.8,0.8"
$setglobal gp_opt2 "set key 5,3"
$setglobal gp_opt3 "set title ’Graph of Random Time Series’"
$setglobal gp_opt4 "set yrange [0:3]"
$setglobal gp_opt5 "set xlabel ’Year -- time step annual’"
$setglobal gp_opt6 "set ylabel ’Value’"

$setglobal domain t
$setglobal labels tlbl
$batinclude plot A





Climate 1-2-3

GAMS programs climate1.gms, climate2.gms, and climate3.gms provides a sim-
plified illustration of ideas in our paper. Your progamming task involves repli-
cating the graphs which illustrate these calculation.

Here are a few extra credit questions for students who are able to produce
the plots with relative ease:

1. The abatement timing model presented here embodies the assumption
that in the initial year of climate action abatement cannot exceed 10% of
baseline emissions, and thereafter it may growh at only 20% per decade.
From a qualitative perspective,how are the optimal policies affected by
these assumptions?

2. How are economic costs affected when the stabilization target (specified
here as 2 degrees) varies from 1.5 to 5 degrees?

3. How sensitive is the optimal abatement policy affected by the intertem-
poral discount rate?

4. How do changes in the baseline emissions assumptions affect the esti-
mated cost of climate stabilization?



In climate1.gms you will need to introduce four $setglobal statements and
one $batinclude plot statement to produce the following graph:



In climate2.gms you will need to declare and define a parameter in order to
produce the following graph:



In climate3.gms you will need to declare and define a reporting parameter and
include two additional solve statements to produce the following figure. a1,
a2 and a3 report abatement as a fraction of baseline emisions in the first,
second and third optimization problems:





climate1.gms

$title climate1.gms Data and an emissions growth path

SET t Time periods /1*40/;

parameter
m0 CO2-equiv concent. 1965 billion tons carbon /677/,
tl0 Lower stratum temperature (C) 1965 /.10/,
t0 Atmospheric temperature (C) 1965 /.2/,
atret Marginal atmospheric retention rate /.64/,
c1 Coefficient for upper level /.226/,
lam Climate feedback factor /1.41/,
c3 Coefficient trans upper to lower stratum /.440/,
c4 Coeff of transfer for lower level /.02/,

r Rate of social time preference per year /.03/,
gl0 Growth rate of population per decade /.223/,
dlab Decline rate of population growth per dec /.195/,
deltam Removal rate carbon per decade /.0833/,
ga0 Initial growth rate for technology per decade /.15/,
dela Decline rate of technology per decade /.11/,



gsigma Growth of sigma per decade /-.1168/,
sig0 CO2-equiv-GWP ratio /.519/,
sigma(t) Emissions-output ratio,
L0 1965 world population millions /3369/,
k0 1965 value capital billions 1989 US dollars /16.03/,
gamma Capital elasticity in output /.25/,

a0 Initial level of total factor productivity /.00963/,
L(t) Level of population and labor,
al(t) Level of total factor productivity (TFP),
ga(t) Growth rate of TFP from 0 to T,
gl(t) Growth rate of labor 0 to T,
gsig(t) Cumulative improvement of energy efficiency
ebau(t) Baseline emissions;

gsig(t) = (gsigma/dela)*(1-EXP(-dela*(ORD(t)-1)));
sigma(t)=sig0*EXP(gsig(t));
gl(t) = (gl0/dlab)*(1-EXP(-dlab*(ORD(t)-1)));
L(t)=L0*EXP(gl(t))*.9;
ga(t)= (ga0/dela)*(1-EXP(-dela*(ORD(t)-1)));
al(t) =a0*EXP(ga(t));



ebau(t) = 10 * sigma(t) * al(t) * (k0*L(t)/L0)**gamma * L(t)**(1-gamma);

set t200(t) /1*20/,
tlbl(t) /5 2050, 10 2100, 15 2150, 20 2200/;



climate2.gms

$title climate2.gms Computation of Climate Response

* Include the preceding file:

$include climate1

parameter
m(t) CO2-equiv concentration billion t
forc(t) Radiative forcing - W per m2
forcoth(t) Exogenous forcings from other greenhouse gases,
te(t) Temperature - atmosphere C
teref(t) Reference temperature path
tl(t) Temperature - lower ocean C
termv Terminal value of atmophere
deltaE Difference iterval /0.001/;

set tfirst(t) The first time period; tfirst(t) = yes$(ord(t)=1);

* Initial conditions for climate model:



m(tfirst) = m0; te(tfirst) = t0; tl(tfirst) = tl0; forcoth(t) = 1.42;

parameter climate Climate evolution
eref(t) Reference emissions
E(t) Currently estimated emissions path,
grad Temperature gradient,
teinit Initial temperature path;

* Write out two "subroutines" for computing the climate model:

$onecho >climatemodel.gms
loop(t,

’Atmospheric carbon accumulation:

m(t) = 590 + atret*eref(t) + (1-deltam)*(m(t-1)-590) + m0$tfirst(t);

* This equation relates the stock of atmospheric carbon to
* forcing, with a climate sensitivity of 4.1 and a
* pre-industrial carbon concentration of 590 parts per million:



forc(t) = 4.1*(LOG(m(t)/590)/LOG(2)) + forcoth(t);

* Thes equations relate forcing to climate change. Higher
* radiative forcings warm the atmospheric layer:

te(t) = te(t-1)+c1*(forc(t-1)-lam*te(t-1)-c3*(te(t-1)-tl(t-1))) + t0$tfirst(t);

* The atmosphere then warms the upper ocean, gradually
* warming the deep oceans:

tl(t) = tl(t-1)+c4*(te(t-1)-tl(t-1)) + tl0$tfirst(t);

teref(t) = te(t);
);
$offecho

alias (t,tp);

$onecho >jacobian.gms
eref(t) = E(t);

$include climatemodel



teinit(t) = teref(t);
grad(t,tp) = 0;
loop(tp,eref(tp) = eref(tp) + deltaE;

$include climatemodel
grad(t,tp)= (teref(t)-teinit(t)) / deltaE;
eref(tp) = eref(tp) - deltaE;);
teref(t) = teinit(t);

$offecho

E(t) = ebau(t);
$include jacobian



climate3.gms

$title climate3.gms Optimal Abatement

* Include both preceding files:

$include climate2

parameter pv(t) Present value cost;

pv(t) = 1/(1+r)**(ord(t)-1);

variables obj Objective function
abate(t) Abatement measures;

positive variable abate;

equations objdef, avetemp, ratelimit;

objdef.. obj =e= sum(t, pv(t) * ABATE(t));

ratelimit(t+1).. ABATE(t+1) =l= 1.2 * ABATE(t) + 0.10*Ebau(t);



avetemp(t).. teref(t) + sum(tp, grad(t,tp)*(Ebau(tp)-ABATE(tp)-eref(tp))) =l= 2;

model optabate /objdef, avetemp, ratelimit/;

* Solve iteration 1:

solve optabate using nlp minimizing obj;
E(t) = ebau(t) - ABATE.L(t);
$include jacobian


