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1 The Static Model

The spatial price equilibrium model begins with the Hitchcock-Koopmans transportation

problem as described by Dantzig (1963). The data for this model includes a set of suppliers

I and a set of markets J , with supplies ai, demands bj, transport costs cij from supplier i

to market j. Cast as a planning problem, this linear program seeks a transport schedule

which minimizes the cost of supplying all markets. That is:

min
∑

ij cijxij

s.t.
∑

j xij ≤ ai

∑
i xij ≥ bj

x ≥ 0

Table 1 presents GAMS code defining the sets and data parameters, and Table 2

presents GAMS code for the linear programming formulation of this model.

It is well known that this problem can be interpreted as a market equilibrium problem

in which the dual multiplier for an equation from the first set of constraints, wi, represents

the price in supply market i, and the dual multiplier for an equation in the second set of

constraints, pj, represents the price in demand market j.

Cast as a market equilibrium problem, a system of IJ inequalities and associated

complementary slackness conditions replace the minimization operator. “Zero profit con-

ditions” for transportation activities characterize a competitive, constant-returns-to-scale

(CRTS) “transportation” industry in which free entry drives excess profits to zero for

active trade links and no unprofitable activities are operated. The equations which char-
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SETS

I canning plants / SEATTLE, SAN-DIEGO /

J markets / NEW-YORK, CHICAGO, TOPEKA / ;

PARAMETERS

A(I) capacity of plant i in cases (when prices are unity)

/ SEATTLE 325

SAN-DIEGO 575 /,

B(J) demand at market j in cases (when prices equal unity)

/ NEW-YORK 325

CHICAGO 300

TOPEKA 275 /,

ETA(I) Price elasticity of supply

/ SEATTLE 1.0

SAN-DIEGO 1.0 /,

SIGMA(J) Price elasticity of demand

/ NEW-YORK 1.5

CHICAGO 1.2

TOPEKA 2.0 /;

TABLE DIST(I,J) distance in thousands of miles

NEW-YORK CHICAGO TOPEKA

SEATTLE 2.5 1.7 1.8

SAN-DIEGO 2.5 1.8 1.4 ;

SCALAR F freight in dollars per case per thousand miles /90/ ;

PARAMETER C(I,J) transport cost in thousands of dollars per case ;

C(I,J) = F * DIST(I,J) / 1000 ;

PARAMETER PBAR(J) Reference price at demand node J (suppy price = 1)

/ NEW-YORK 1.225

CHICAGO 1.153

TOPEKA 1.126 /;

Table 1: GAMS Set and Data Statements for the Transportation Model

VARIABLES

X(I,J) SHIPMENT QUANTITY FROM I TO J

COST MINIMAND - TOTAL COST OF SHIPMENT

POSITIVE VARIABLE X;

EQUATIONS

SUPPLY(I) SUPPLY LIMIT

DEMAND(J) DEMAND CONSTRAINT (FIXED)

OBJDEF DEFINES COST;

SUPPLY(I).. A(I) =G= SUM(J, X(I,J));

DEMAND(J).. SUM(I, X(I,J)) =G= B(J);

OBJDEF.. COST =E= SUM((I,J), C(I,J) * X(I,J));

MODEL MINCOST / SUPPLY, DEMAND, OBJDEF/;

SOLVE MINCOST USING LP MINIMIZING COST;

Table 2: The Transportation Model Formulated as a Linear Program
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POSITIVE VARIABLES

W(I) SHADOW PRICE AT SUPPLY NODE I,

P(J) SHADOW PRICE AT DEMAND NODE J,

X(I,J) SHIPMENT QUANTITIES IN CASES;

EQUATIONS

SUPPLY(I) SUPPLY LIMIT AT PLANT I,

DEMAND(J) FIXED DEMAND AT MARKET J,

PROFIT(I,J) ZERO PROFIT CONDITIONS;

PROFIT(I,J).. W(I) + C(I,J) =G= P(J);

SUPPLY(I).. A(I) =G= SUM(J, X(I,J));

DEMAND(J).. SUM(I, X(I,J)) =G= B(J);

MODEL TRNSP / PROFIT.X, SUPPLY.W, DEMAND.P/ ;

SOLVE TRNSP USING MCP;

Table 3: The Transportation LP Formulated as an LCP

acterize this equilibrium are:

∑
j xij ≤ ai, wi ≥ 0, wi

(
ai − ∑

j xij

)
= 0 ∀i

∑
i xij ≥ bj, pj ≥ 0, pj (bj − ∑

i xij) = 0 ∀i

wi + cij ≥ pij, xij ≥ 0, xij (wi + cij − pj) = 0 ∀i, j

This system of inequalities is a linear complementarity problem which may be specified

in GAMS/MCP syntax as shown in Table 3.

There would be no particular reason to formulate a linear program as an MCP. Sup-

pose, however, that demands and supplies were price responsive and all markets perfectly

competitive. These assumptions alone would not rule out an optimization approach, but

they would require use of a nonlinear programming algorithm. For concreteness, let

demand and supply functions be isoelastic. The revised equilibrium conditions are:

∑
j xij ≤ αiw

ηi
i , wi ≥ 0, wi

(
αiw

ηi
i − ∑

j xij

)
= 0 ∀i

∑
i xij ≥ βjp

−σj

j , pj ≥ 0, pj

(
βjp

−σj

j − ∑
i xij

)
= 0 ∀i

wi + cij ≥ pij, xij ≥ 0, xij (wi + cij − pj) = 0 ∀i, j

This is a nonlinear complementarity problem which in certain cases may represent the

first-order optimality conditions for a nonlinear program. When the matrix of cross-price

elasticities for a partial equilibrium model is symmetric, there is an associated optimiza-

tion problem which can be used to compute the equilibrium prices and quantities. (The

model is said to be integrable - see Takayama and Judge (1971).) In the present example,
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$STITLE A SPATIAL PRICE EQUILIBRIUM MODEL FORMULATED AS AN NLP

VARIABLES X(I,J) SHIPMENT QUANTITY FROM I TO J

Y(I) SUPPLY

D(J) DEMAND

SURPLUS MAXIMAND - SOCIAL SURPLUS;

POSITIVE VARIABLE X, Y, D;

EQUATIONS SUPPLY(I) SUPPLY LIMIT

DEMAND(J) DEMAND CONSTRAINT (FIXED)

OBJDEF DEFINES COST;

SUPPLY(I).. Y(I) =G= SUM(J, X(I,J));

DEMAND(J).. SUM(I, X(I,J)) =G= D(J);

OBJDEF.. SURPLUS =E= SUM(J, KAPPA(J) * D(J)**EPSD(J))

- SUM(I, GAMMA(I) * Y(I)**EPSY(I))

- SUM((I,J), C(I,J) * X(I,J));

MODEL NLPEQUIL /SUPPLY, DEMAND, OBJDEF/;

D.LO(J) = 0.01;

SOLVE NLPEQUIL USING NLP MAXIMIZING SURPLUS;

Table 4: The Spatial Price Equilibrium Model in an Optimization Format

cross-price elasticities are zero, and the associated optimization problem is:

max
∑

i γiy
εy
i

i +
∑

j κjd
εd
j

j − ∑
ij cijxij

s.t.
∑

j xij ≤ yi

∑
i xij ≥ dj

xij ≥ 0, dj ≥ 0, yi ≥ 0

where:

γi =
ηi

1 + ηi

(
1

αi

)1/ηi

, κj =
σj

1 + σj

β
1/σj

j , εy
i =

1 + ηi

ηi

, and εd
j =

σj − 1

σj

In economic terms, the market allocation “maximizes the sum of producer and consumer

surplus”.

Economic equilibrium models are typically used to assess the consequences of market

distortions, typically in the form of taxes, tariffs or other types of government policies.

In public finance, equilibrium models are often used to measure the “excess burden” of a

given tax structure. When ad-valorem taxes are present, the NLP formulation of a market

equilibrium problem is not straight-forward. No single optimization problem characterizes

the equilibrium because the resulting allocation is inefficient. Such an equilibrium could

be computed by solving a sequence of nonlinear programs, but in these cases the MCP

formulation is certainly more transparent.
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PARAMETER T(I,J) AD-VALOREM TAX RATE;

POSITIVE VARIABLES

W(I) SHADOW PRICE AT SUPPLY NODE I,

P(J) SHADOW PRICE AT DEMAND NODE J,

X(I,J) SHIPMENT QUANTITIES IN CASES;

EQUATIONS

SUPPLY(I) SUPPLY LIMIT

DEMAND(J) DEMAND CONSTRAINT (FIXED)

PROFIT(I,J) ZERO PROFIT CONDITIONS;

SUPPLY(I).. ALPHA(I) * W(I)**ETA(I) =G= SUM(J, X(I,J));

DEMAND(J).. SUM(I, X(I,J)) =G= BETA(J) * P(J)**(-SIGMA(J));

PROFIT(I,J).. (1 + T(I,J)) * (W(I) + C(I,J)) =G= P(J);

MODEL TRNSP / PROFIT.X, SUPPLY.W, DEMAND.P/ ;

* Avoid function evaluation errors by installing positive bounds:

P.LO(J) = 0.001; W.LO(I) = 0.001;

* 10% tax on all trade:

T(I,J) = 0.10;

SOLVE TRNSP USING MCP;

Table 5: Spatial Price Equilibrium with Ad-Valorem Taxes

As illustration of a model which is difficult to treat in an optimization framework but

easy to pose as an MCP, consider applying ad-valorem taxes on trade flows in the spatial

equilibrium model from above. This causes the supply price to be a non-unitary multiple

of the marginal cost of supply, destroying integrability (notice that specific taxes do not

cause this problem, as they can simply be added to the transport cost coefficients). The

GAMS/MCP model is shown in Table 4.
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2 Calibration

We begin from a benchmark dataset describing supply, demand and transport cost and

trade barriers for a single commodity. The most readily available sources of these data

would be the U.S. Department of Energy’s Energy Information Agency (see http://www.eia.doe.gov/)

and the U.S. Department of Agriculture Economic Research Service (see http://www.ers.usda.gov/).

We want to build a spatial price equilibrium model for a single homogeneous commodity.

A minimal dataset for this work would include:

Si base year supply from region i

Dj base year demand in region j

cij transport cost from region i to region j

tij specific unit tax on sales from region i to region j

The tax rates specified as part of the benchmark data are quite general. They could be

used to represent a combination of production subsidies (si), production taxes (Ti) and

import tariffs (τij) by making the assignment:

tij = Ti − si + τij

In representing the base year equilibrium the individual components of tij are irrelevant,

but in subsequent policy analysis, the distributional consequences of reforms will depend

on how tax revenues accrue to various regional governments.

The following GAMS code provides data for a spatial price equilibrium dataset. The

table has been imported from an Excel worksheet and pasted into the GAMS program

file using a conventional text editor:

$title Wheat Production and Consumption data

set R Regions /

USA United States

CAN Canada

...

/;

set col Data columns /Area,Yield,Produce,Consume/

yr Years /1996*2000/;

Table data(r,yr,col) Wheat Market Data (1000s)

Area Yield Produce Consume Price

can.1996 12262.00 2.43 29801.00 8222.00 12.0

can.1997 11410.00 2.13 24280.00 7336.00 10.2

can.1998 10769.00 2.24 24076.00 8077.00 8.9

can.1999 10364.00 2.59 26850.00 7900.00 9.5

can.2000 10900.00 2.46 26800.00 8200.00 10.1

...

Table trncost(r,r) Transport costs (% of CIF value)

usa can jpn gbr deu den ...

can 2 0 5 8 9 2

...
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Let the GAMS variable named x0 to represent the base year data which is denoted x

here. When we read in the base year data, it is convenient to impose market consistency in

order to have a reference equilibrium point. Here I choose to proportionally scale regional

supplies to match base year consumption demand:

parameter s0(r) Base year supply

d0(r) Base year demand

bmktol Base year consistency (% excess demand)

s0(r) = data(r,"2000","Produce");

c0(r) = data(r,"2000","Consume");

bmktol = 100 * (sum(r,c0(r))/sum(r,s0(r)) - 1);

display bmktol;

* Scale base year supply data to impose market

* clearance;

alias (r,rr);

s0(r) = (s0(r)/sum(rr,s0(rr))) * sum(rr,c0(rr));

The static equilibrium model is then represented by the equations:

Supply (⊥ wi)

Si = Si

(
wi

wi

)ηi

≥ ∑
j

Xij

Demand (⊥ pj) ∑
i

Xij ≥ Dj = Dj

(
pj

pj

)−σj

Profit (⊥ Xij ≥ 0)

wi + cij + tij ≥ pj

In setting up the model that transport costs (cij), tax rates (tij) and a single reference

price (pUSA) are all known. The base year trade flows then are consistent with cost

minimization:

min
∑
ij

Xij(cij + tij)

subject to:

Si ≥
∑
j

Xij

∑
i

Xij ≥ Dj

Xij ≥ 0 ∀i, j

Here is a summary of the steps involved in setting up a static model:
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1. Move the data from its original format into something GAMS-readable. (It is a

good idea to maintain a ”handshake” as part of the data transfer. For example,

compute row and column sums within the Excel file and then verify that these sums

are identical with calculations based on the data after it has been transferred into

GAMS.)

2. Write GAMS code to aggregate the number of regions to something appropriate for

model development. This can be done use multi-dimensional sets (tuples) in GAMS,

as illustrated in the following program:

set rr Regions in the aggregate data

/ oecd OECD members, noecd Countries not part of the OECD /,

r /ARG,AUS,BGD,BRA,CAN,CHE,CHL,CHN,COL,EUR,

FSU,HKG,HUN,IDN,IND,JPN,KOR,LKA,MEX,MYS,

NZL,PER,PHL,POL,ROW,SGP,THA,TWN,URY,USA,

VEN,VNM/,

map(r,rr) Mapping from r to rr /

(AUS,CAN,CHE,EUR,JPN,KOR,MEX,NZL,USA).OECD,

(ARG,BGD,BRA,CHL,CHN,COL,FSU,HKG,HUN,IDN,IND,LKA,

MYS,PER,PHL,POL,ROW,SGP,THA,TWN,URY,VEN,VNM).NOECD/;

* Verify that each source region is assigned to a single disaggregate region:

parameter nmap(*) Number of regions mapping;

nmap(r) = sum(rr$map(r,rr), 1);

loop(r, abort$(nmap(r) ne 1) "Mapping error - r."; );

nmap(r) =0;

nmap(rr) = sum(r$map(r,rr), 1);

loop(rr, abort$(nmap(rr) eq 0) "Mapping error - rr"; );

* Notice that d() is declared with a specific

* domain prior to reading the data. This provides

* index-checking on the first argument:

parameter d(r,*) Original data set

d_(rr,*) Aggregated data set;

$include steps.dat

* Create the aggregate array for all the data:

alias (u,*);

d_(rr,u) = sum(r$map(r,rr), d(r,u));

* Generate a new data file with the aggregated data:

file kdat /aggr.dat/; put kdat;

$libinclude gams2prm rr r

$libinclude gams2prm d_ d

3. Calibrate base year trade flows using linear programming. As we went through in

class, this involves computing a least-cost transportation plan given supply con-

straints, demand constraints and transport costs. Shadow prices on demand and

supply constraints can be used to infer base year prices from the LP, taking the

supply price at one node as given.

4. Replicate the LP trade flows in the equilibrium model.

5. Perform a policy experiment and analyze the results.
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3 Production Functions

Our initial model was based on constant elasticity supply functions. The long- and short-

run elasticities of supply in this framework can be controlled by varying the value of ηi

to reflect assumptions about the supply response.

3.1 A Constant Elasticity Model

A somewhat more sophisticated model would incorporate model elements which would

explain the supply elasticity. As illustration, consider a production function which exhibits

constant returns to scale in terms of two inputs: labor and capital. In the short run,

capital is sector-specific and fixed, hence the function exhibits decreasing returns to scale

in terms of labor inputs. We assume that the production function can be written:

f(K,L) = φ (αLρ + (1 − α)Kρ)1/ρ

In a competitive market, market price equals marginal cost, hence:

p = c(w, rK) =
1

φ

(
α

(
w

α

)1−σ

+ (1 − α)
(

rK

1 − α

)1−σ
)1/1−σ

in which w is the wage rate, rK is the capital rental rate, and σ = 1/(1−ρ) is the elasticity

of substitution between labor and capital. We assume that the wage rate is given (i.e.,

this sector is small relative to the aggregate labor market). In the short run, capital is

sector specific and fixed. By Shepard’s lemma we have the following relationship between

output, capital and resources:

y
∂c(w, rK)

∂rK

= K̄

or:
y

φ

(
φc(1 − α)

rK

)σ

= K̄

Following the same reasoning, we have labor demand given by:

y

φ

(
φcα

w

)σ

= L

These demand functions characterize the model, however, if we want to compute

equilibria in this framework we need to uncover the model parameters, φ and α. Let

us assume that along a baseline steady-state growth path we can observe output (ȳ),

employment (L̄), the wage rate (w̄) and the return to capital (r̄K). We may take the

benchmark price of output to be unity, and the capital stock may then be inferred from

the zero profit condition:

K̄ =
ȳ − L̄w̄

r̄K
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The demand functions for capital and labor shown above imply that:

L̄

K̄
=

(
αr̄K

(1 − α)w̄

)σ

or

α =
w̄L̄1/σ

w̄L̄1/σ + r̄KK̄1/σ

Having assigned the value of α, the value of φ can be inferred from the production

function itself:

φ =
ȳ(

αL̄ρ + (1 − α)K̄ρ
)1/ρ

3.2 The Calibrated Form

The preceding algebra is a bit cumbersome because of the need to introduce algebraic

calibration of α and φ, the values of which depend on the assume elasticity of substi-

tution σ. It can be helpful for numerical modeling to work with the calibrated form of

the production and demand functions. In this representation the production function is

written as:

f(K,L) = ȳ

[
θ

(
L

L̄

)ρ

+ (1 − θ)
(

K

K̄

)ρ
]1/ρ

in which θ is calculated as the labor value share at the benchmark point:

θ =
w̄L̄

w̄L̄ + r̄KK̄
=

w̄L̄

ȳ

Having defined the reference output price to be unity, the calibrated form of the unit cost

function is written:

c(w, rK) =

[
θ

(
w

w̄

)1−σ

+ (1 − θ)
(

rK

r̄K

)1−σ
]1/1−σ

The demand functions are written in calibrated form as:

L = L̄

(
y

ȳ

) (
cw̄

w

)σ

and

K = K̄

(
y

ȳ

) (
cr̄K

rK

)σ
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3.3 Choosing σ to Match η

In a conventional application, it would be customary to assume a value of σ which, to-

gether with the base year production statistics, would define all aspects of the production

function. In a dynamic model, however, it may be preferred to calibrate the value of σ to

an assumed short-run elasticity of supply, i.e.

η =
∂y

∂p

p

y

∣∣∣∣∣
w̄,K̄

In this calculation we presume that a change in the price of output results in a change in

the level of employment, L, and in the return to capital rK , while the wage rate w̄ and

the capital stock K̄ remain fixed.

When the wage departs from its benchmark value, assuming competitive supply (i.e.,

c(rK , w) = p), the capital constraint can be inverted to obtain an explicit expression for

the return in terms of the output price and output quantity:

rk

r̄K

= p

(
y

ȳ

)1/σ

Substituting back into the cost function, we have

p1−σ = θp1−σ

(
y

ȳ

) 1−σ
σ

+ (1 − θ)w1−σ

or

y

ȳ
= θ

1
σ−1


1 − (1 − θ)

(
w

p

)1−σ



σ
1−σ

Differentiating this expression with respect the relative price of output, and setting all

prices equal to unit, we have:

η =
σ(1 − θ)

θ

This equation can be used in a variety of ways to calibrate the supply function. One

approach would be to choose the value share of the fixed factor θ to match the base year

profits, and then assign the elasticity according to:

σ = η
θ

(1 − θ)

Alternatively, one could take the elasticity of substitution as given and the specific

factor value share accordingly:

θ =
σ

σ + η
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3.4 A Three Factor Model

In a dynamic model it may be helpful to introduce two notions of the elasticity of supply:

short-run and long-run. A simple way to introduce this distinction into a numerical model

is to work with a three factor production function:

y = f(L,K,R)

where L is labor, a production factor which is variable in both the short and long run,

K is capital, a quasi-fixed production factor which is variable in the long run but fixed

in the short run, and R is a sector-specific resource which is fixed in both the short and

long run.

Following the apporach outlined in the previous section, we can write the long-run

production function as:

y = ȳ

[
θL

(
L

L̄

)ρ

+ θK

(
K

K̄

)ρ

+ (1 − θL − θK)

]1/ρ

The R input does not appear in the calibrated production function because we have

assumed that R = R̄. In the short-run model, we have:

y = ȳ

[
θL

(
L

L̄

)ρ

+ (1 − θL)

]1/ρ

If the short-run elasticity of supply is given by ηS, and the labor value share (θL) is

given in the benchmark data, we can then calibrate the elasticity of substitution to match

these inputs:

σ = ηS
θL

(1 − θL)

Let us assume that while the labor value share is observed (employment statistics are

commonly available for many secttors and regions), but the allocation of the remaining

value added is not known with certainty. We can take advantage of this uncertainty to

calibrate the long-run supply response by choosing the capital value as:

θK =
σ

σ + ηL

− θL

given the value of σ previously calibrated. (It can be shown that when ηL > ηS, we find

that θK < 1 − θL.)
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4 Quadratic Adjustment Cost

By convention we model the capital stock (Kt) as subject to a constant geometric depre-

ciation rate. The capital stock may be increased by net investment (It):

Kt+1 = (1 − δ)Kt + It

Following Uzawa, we assume that capital installation costs depend on the rate of gross

investment relative to the existing capital stock. Given the level of investment, the cost

of new capital decreases when the capital stock increases and vice versa. The installation

cost function relating net to gross investment is given by

Jt = It

(
1 + φ

It

2Kt

)

where φ is the adjustment cost parameter.

When φ = 0, there are no adjustment costs, and the model reduces to the neoclassical

(Ramsey) model. When φ is large, rapid changes in the capital stock are costly and the

speed of adjustment is reduced when installation costs increase. It follows from this spec-

ification that net investment is included in the intertemporal market clearance condition

for capital and that gross investment is included in the market clearance condition for

output.

Along a balanced growth path with growth rate g and depreciation rate δ, I = (g+δ)K,

and the marginal cost of investment equals 1+φ(g+δ), and with a one period investment

lag the base year capital price is

pK = (1 + r) [1 + φ(g + δ)] .

As a result of adjustment costs, a marginal increase in the capital stock both increases

the supply of productive capital services and decreases the cost of new investment. We

can evaluate the marginal return associated decreased investment cost by computing:

∂J

∂K
= − φI2

2K2

The baseline investment cost premium for capital is therefore given by:

ρ =
φ(g + δ)2

2

With a competitive market for capital services, the value of capital at the start of a

period equals the return to productive services in that period (rK), the premium associated

with investment (ρ) and the salvage value of capital in the subsequent period:

pK = rK + ρ + (1 − δ)
pK

1 + r
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Hence,

rK =
r + δ

1 + r
pK − ρ

which reduces to:

rK = r + δ + φ(δ + g)

[
r +

δ − g

2

]

The rental price of capital then includes three terms: (i) the time cost (r), (ii) the

depreciation cost (δ), and (iii) the adjustment premium (φ(δ + g)
[
r + δ−g

2

]
).
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5 A Dynamic Optimization Model

I’ve coded up a single production dynamic optimization model which illustrates both

the calibration of short- and long-run supply elasticities and the Uzawa adjustment cost

representation of investment. This GAMS program represents the producer problem both

as a nonlinear optimization problem an as a mixed complementarity model. There are

seven sections to the program, as follows.

5.1 Set definitions and input assumptions
set t Time period in the model (year) /2002*2050/,

td(t) Decades /2010,2020,2030,2040,2050/;

scalar lvs Base year labor value share /0.4/,

phi Speed of adjustment parameter /0.3/,

r Interest rate /0.05/,

g Growth rate /0.02/,

delta Capital depreciation rate /0.07/,

eta_S Short-run elasticity of supply /0.5/,

eta_L Long-run elasticity of supply /1.5/;

5.2 Calibration
sets tf(t) First period of the model,

tl(t) Last period of the model;

tf(t) = yes$(ord(t) eq 1);

tl(t) = yes$(ord(t) eq card(t));

* Calibrated parameters for the production function:

parameter

price(t) Output price,

sigma Elasticity of substitution,

rho Primal elasticity parameter,

rk0 Baseline rental price of capital,

kvs Capital value share,

k0 Base year capital stock,

i0 Base year investment,

rvs Resource value share,

rs(t) Resource stock (index),

p(t) Steady-state price index;

* Rental rate on capital is defined by the

* capital adjustment cost model and the

* assumption of a steady-state growth path:

rk0 = r + delta + phi * (delta+g) * (r+(delta-g)/2);

* Steady-state prices decline with the

* interest rate:

p(t) = 1/power(1+r,ord(t)-1);

* Steady-state quantities increase with the

* growth rate:

rs(t) = power(1+g,ord(t)-1);

* Use the labor value share and the short-run

* elasticity of supply to calibrate the elasticity

* of substitution:

sigma = (1-lvs)/lvs * eta_S;

rho = 1 - 1/sigma;

* Use the elasticity of substitution and the long-run

* elasticity of supply to calibrate the resource value

* share:

rvs = sigma/(eta_L + sigma);

* Capital value share is then determined as a residual:
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kvs = 1 - rvs - lvs;

* Capital stock is defined by the capital earnings

* (which equal the capital value share given the

* value of output scaled to unity):

k0 = kvs/rk0;

* Net investment is consistent with steady-state

* growth:

i0 = k0 * (g+delta);

display sigma, kvs, rvs;

5.3 The nonlinear programming model

variables PI Present value of profit

positive

variables

Y(t) Production in period t

I(t) Net Investment

J(t) Gross Investment

L(t) Employment

K(t) Capital

KT Terminal capital stock;

equations profit, jdef, terminv, capital, termcap, output;

* Objective is to maximize the present value of

* profits over the model horizon and the salvage

* value of capital in the final period:

profit.. pi =e=

sum(t, (price(t)*y(t)-lvs*L(t)-J(t)) * p(t))

+ sum(tl, p(tl)*(1+phi*(g+delta))*kt);

* Gross investment equals net investment plus

* adjustment costs:

jdef(t).. J(t) =e= I(t) * (1 + phi * I(t)/(2*K(t)));

* To approximate an infinite horizon, we require

* investment in the terminal period equals

* the steady-state value:

terminv.. sum(tl, I(tl) - (g+delta)*K(tl)) =e= 0;

* Capital evolves through depreciation and net

* investment:

capital(t).. (1-delta)*K(t-1) + I(t-1) + k0$tf(t) =e= K(t);

termcap.. sum(tl, (1-delta) * K(tl) + I(tl)) =e= kt;

output(t).. y(t) =e= (lvs*L(t)**rho

+ kvs*(K(t)/k0)**rho

+ rvs*rs(t)**rho)**(1/rho);

k.l(t) = rs(t) * k0;

I.l(t) = rs(t) * i0;

J.l(t) = I.l(t) * (1 + phi * I.l(t)/(2*K.l(t)));

L.l(t) = rs(t);

y.l(t) = rs(t);

kt.l = (1+g)**card(t) * k0;

pi.l = sum(t,(y.l(t)-lvs*L.l(t)-J.l(t))*p(t))+sum(tf,p(tf)*kt.l);

model dynamic /all/;

* Insert some bounds to prevent bad function calls:

k.lo(t) = 0.01*rs(t);

l.lo(t) = 0.01*rs(t);

k.fx(tf) = k0;

price(t) = 1;

solve dynamic using nlp maximizing pi;
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5.4 Check of steady-state calibration

parameter summary Summary report (% change from steady state);

* Install deviations from the steady-state path.

* All of these values should be zero.

* Add "eps" so that everything gets plotted, otherwise

* zeros are ignored and nothing would be plotted:

summary(t,"y") = 100 * (y.l(t)/rs(t)-1) + eps;

summary(t,"k") = 100 * (k.l(t)/(k0*rs(t))-1) + eps;

summary(t,"i") = 100 * (I.l(t)/(i0*rs(t))-1) + eps;

summary(t,"L") = 100 * (L.l(t)/rs(t)-1) + eps;

$setglobal domain t

$setglobal labels td

$libinclude plot summary

5.5 The complementarity model

variables pk(t) Purchase price of capital,

rk(t) Rental price of capital,

rr(t) Rental price of the fixed factor,

pkT Terminal price of capital;

equations profit_i(t) Investment profit

profit_k(t) Capital profit

profit_y(t) Production profit

capstock(t) Capital services market

resource(t) Resource constraint;

profit_i(t).. p(t) * (1 + phi * I(t)/K(t))

=g= pk(t+1) + pkT$tl(t);

profit_k(t).. pk(t) =e= rk(t)

+ (phi/2) * sqr(I(t)/K(t)) * p(t)

+ (1-delta)*(pk(t+1)+pkT$tl(t));

capstock(t).. K(t) =e= y(t) * k0 * (rk0*price(t)*p(t)/rK(t))**sigma;

resource(t).. rs(t) =e= y(t) * (price(t)*p(t)/rr(t))**sigma;

profit_y(t).. ( lvs

+ kvs * (rk(t)/(p(t)*rk0))**(1-sigma)

+ rvs * (rr(t)/p(t))**(1-sigma) )**(1/(1-sigma))

=e= price(t);

model dynamic_mcp /profit_y.y, profit_k.k, profit_i.I,

capital.pk, termcap.pkT, terminv.kt,

resource.rr, capstock.rk/;

* Install steady-state values for prices:

rr.l(t) = p(t);

rk.l(t) = p(t)*rk0;

pk.l(t) = p(t)*(1+r)*(1+phi*(g+delta));

pkT.l = sum(tl, pk.l(tl)/(1+r));

parameter pricechk Cross check of steady-state prices;

pricechk(t,"rr") = rr.l(t) - (output.m(t) * (y.l(t)/rs(t))**(1-rho));

pricechk(t,"rk") = rk.l(t) - (kvs * k0**(-rho) * output.m(t) * (y.l(t)/k.l(t))**(1-rho));

pricechk(t,"pk") = pk.l(t) + capital.m(t);

pricechk(tf,"pk") = pk.l(tf) - k.m(tf);

pricechk(t,"pkT") = pkT.l - sum(tl,p(tl)*(1+phi*(g+delta)));

display pricechk;

* Replicate the baseline steady-state growth path:

dynamic_mcp.iterlim = 0;

solve dynamic_mcp using mcp;
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5.6 Checking short- and long-run supply elasticities

* Perturb the output prices and trace the short-

* and long-run supply response:

price(t) = 1.01;

solve dynamic using nlp maximizing pi;

parameter summary Optimal response;

summary(t,"RR") = 100 * (

output.m(t) * (y.l(t)/rs(t))**(1-rho) / p(t) - 1);

summary(t,"RK") = 100 * (

kvs*k0**(-rho)*output.m(t)*(y.l(t)/k.l(t))**(1-rho)

/ (p(t)*rk0) - 1);

summary(t,"Y") = 100 * (y.l(t)/rs(t)-1) + eps;

summary(t,"K") = 100 * (k.l(t)/(k0*rs(t))-1) + eps;

summary(t,"I") = 100 * (i.l(t)/(i0*rs(t))-1) + eps;

* Plot the percentage chance in output:

$libinclude plot summary

display summary;

5.7 Verify consistency of the NLP and MCP models
* Verify that the NLP and MCP models are

* consistent by checking the NLP solution:

rr.l(t) = output.m(t) * (y.l(t)/rs(t))**(1-rho);

rk.l(t) = kvs * k0**(-rho) * output.m(t) * (y.l(t)/k.l(t))**(1-rho);

pk.l(t) = -capital.m(t);

pk.l(tf) = k.m(tf);

pkT.l = sum(tl,p(tl)*(1+phi*(g+delta)));

dynamic_mcp.iterlim = 0;

solve dynamic_mcp using mcp;

display "Tolerance of the MCP solution is:",dynamic_mcp.OBJVAL;

6 Scenario Analysis

6.1 run.bat
@echo off

if exist output.sol del output.sol

echo $setglobal phi 1 >nlp.ini

call gams nlp

echo $setglobal phi 2 >nlp.ini

call gams nlp

echo $setglobal phi 3 >nlp.ini

call gams nlp

6.2 nlp.gms
$title Single Producer Dynamic Production Model

$if exist nlp.ini $include nlp.ini

$if not setglobal phi $setglobal phi 3

set t Time period in the model (year) /2002*2050/,

ts(t) Time period of the price shock /2002*2010/,

td(t) Decades /2010,2020,2030,2040,2050/;

scalar lvs Base year labor value share /0.4/,

phi Speed of adjustment parameter /0.%phi%/,
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Figure 1: Consistency Check for Steady-state Calibration
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Figure 2: Dynamic Response of a 1% Price Shock
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Note that the short-run elasticity of supply is 0.5 and the long-
run elasticity of supply is 1.5.

20



r Interest rate /0.05/,

g Growth rate /0.02/,

delta Capital depreciation rate /0.07/,

eta_S Short-run elasticity of supply /0.5/,

eta_L Long-run elasticity of supply /1.5/;

sets tf(t) First period of the model,

tl(t) Last period of the model;

tf(t) = yes$(ord(t) eq 1);

tl(t) = yes$(ord(t) eq card(t));

parameter

price(t) Output price,

sigma Elasticity of substitution,

rho Primal elasticity parameter,

rk0 Baseline rental price of capital,

kvs Capital value share,

k0 Base year capital stock,

i0 Base year investment,

rvs Resource value share,

rs(t) Resource stock (index),

p(t) Steady-state price index;

rk0 = r + delta + phi * (delta+g) * (r+(delta-g)/2);

p(t) = 1/power(1+r,ord(t)-1);

rs(t) = power(1+g,ord(t)-1);

sigma = (1-lvs)/lvs * eta_S;

rho = 1 - 1/sigma;

rvs = sigma/(eta_L + sigma);

kvs = 1 - rvs - lvs;

k0 = kvs/rk0;

i0 = k0 * (g+delta);

variables PI Present value of profit

positive

variables Y(t) Production in period t

I(t) Net Investment

J(t) Gross Investment

L(t) Employment

K(t) Capital

KT Terminal capital stock;

equations profit, jdef, terminv, capital, termcap, output;

profit.. pi =e=

sum(t, (price(t)*y(t)-lvs*L(t)-J(t)) * p(t))

+ sum(tl, p(tl)*(1+phi*(g+delta))*kt);

jdef(t).. J(t) =e= I(t) * (1 + phi * I(t)/(2*K(t)));

terminv.. sum(tl, I(tl) - (g+delta)*K(tl)) =e= 0;

capital(t).. (1-delta)*K(t-1) + I(t-1) + k0$tf(t) =e= K(t);

termcap.. sum(tl, (1-delta) * K(tl) + I(tl)) =e= kt;

output(t).. y(t) =e= (lvs*L(t)**rho + kvs*(K(t)/k0)**rho + rvs*rs(t)**rho)**(1/rho);

k.l(t) = rs(t) * k0;

I.l(t) = rs(t) * i0;

J.l(t) = I.l(t) * (1 + phi * I.l(t)/(2*K.l(t)));

L.l(t) = rs(t);

y.l(t) = rs(t);

kt.l = (1+g)**card(t) * k0;

pi.l = sum(t,(y.l(t)-lvs*L.l(t)-J.l(t))*p(t))+sum(tf,p(tf)*kt.l);

model dynamic /all/;

k.lo(t) = 0.01*rs(t); l.lo(t) = 0.01*rs(t); k.fx(tf) = k0; price(t) = 1;

solve dynamic using nlp maximizing pi;

price(ts) = 1.01;

solve dynamic using nlp maximizing pi;

parameter ypct Output response to price change;

ypct(t,"%phi%") = 100 * (y.l(t)/rs(t)-1) + eps;

file kout /output.sol/; kout.ap=1; put kout;

$libinclude gams2txt ypct
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6.3 output.sol
*=>gams2txt ypct

* Called from E:\COURSES\6433\NLP.GMS -- line 359

* 03/17/02 23:00:39

2002.1 4.9772312417002E-01

2003.1 1.0803120954707E+00

2004.1 1.3231263482286E+00

2005.1 1.4227954386266E+00

2006.1 1.4605473097837E+00

2007.1 1.4670618744718E+00

2008.1 1.4470035834035E+00

2009.1 1.3821975484625E+00

...

6.4 report.gms
set t /2002*2050/

tf(t), tl(t),

td(t) /2005,2010,2015,2020/,

tearly(t) /2002*2020/

parameter ypct(t,*) /

$include output.sol

/;

$setglobal domain tearly

$setglobal labels td

$libinclude plot ypct
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Figure 3: Dynamic Response of a Temporary Price Shock
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